Astrochemistry and Origins

Interstellar Matter and Cosmology

Stellar and Solar Physics

Solar and Planetary Systems

Latest News

3 months 2 weeks ago

The first scientific results from Euclid, the European space cosmology mission, were unveiled on Thursday May 23, 2024: 15 scientific papers, including 5 general ones about the space mission, its instruments and processing, and 10 on the first astrophysical observations. These first observations and articles confirm Euclid's performances, and mark the start of the “Euclid era” for cosmology. The nominal mission will last 6 years, with partial data delivery within 1 year, and the first data delivery within 2 years.

4 months 2 weeks ago

The Horsehead Nebula has been discovered in the visible range as a dark cloud appearing in extinction at the edge of a giant molecular complex in Orion. It is a photo-dominated region (PDR) illuminated by a massive star. It is of great interest to astrophysicists, as it is the ideal object for understanding the interactions between UV radiation emitted by stars and interstellar matter, the way radiation propagates inside dense clouds, and the impact of radiation on matter (photo-evaporation, ionization, dissociation, fragmentation, heating, etc.).

6 months 5 days ago

How many earth-like planets orbit the habitable zone of solar-like stars? How planets form and evolve in their planetary systems? What about the interaction with their stars? These are among the questions the ESA PLATO mission is called to answer, through exquisite measurements of exoPLAnet Transits and Oscillations of stars (you now know the origin of the PLATO acronym). The “transit” measurements yield information on the size of the planets, while the “stellar oscillations” give us the mass and age of the stars, which in turn are fundamental to assess the mass and age of the hosted planets. The exquisite quality of all such measurements is secured by 26 ultra large field-of-view cameras that make the eyes of the PLATO mission.

6 months 3 weeks ago

An international team, involving scientists from IAS, IRAP, ISMO and LERMA, has shed light on the destruction and reformation of a large quantity of water in the planet-forming disk “d203-506” located at the heart of the Orion Nebula. This discovery was made possible by an original multidisciplinary approach that combines observations from the JWST space telescope and quantum physics calculations. The study, carried out as a part of the PDRs4All¹ Early Release Science (ERS) program and led by Marion Zannese, a PhD student at the Institut d’Astrophysique Spatiale, has been published in Nature Astronomy.

Pages

Subscribe to Syndicate