You are here

Estimating hyperparameters and instrument parameters in regularized inversion Illustration for Herschel/SPIRE map making

TitleEstimating hyperparameters and instrument parameters in regularized inversion Illustration for Herschel/SPIRE map making
Publication TypeJournal Article
Year of Publication2013
AuthorsOrieux, F, Giovannelli, J-F, Rodet, T, Abergel, A
JournalAstronomy and Astrophysics
Volume549
Pagination83
Date PublishedJanuary 1, 2013
ISBN Number0004-6361
Keywordsmethods: data analysis, methods: numerical, methods: statistical, techniques: image processing
Abstract

We describe regularized methods for image reconstruction and focus on the question of hyperparameter and instrument parameter estimation, i.e. unsupervised and myopic problems. We developed a Bayesian framework that is based on the posteriordensity for all unknown quantities, given the observations. This density is explored by a Markov chain Monte-Carlo sampling technique based on a Gibbs loop and including a Metropolis-Hastings step. The numerical evaluation relies on the SPIRE instrument of the Herschel observatory. Using simulated and real observations, we show that the hyperparameters and instrument parameters are correctly estimated, which opens up many perspectives for imaging in astrophysics.

Subscribe to Syndicate