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ABSTRACT

The quality of helioseismological ground based data strongly depends on the pres-
ence of gap in the observational window. In order to address that problem in the case
of full disk low-degree p-mode velocity measurements, Fossat et al. (1999) proposed
a gap filling method called ‘Repetitive music’. The autocorrelation function of the
velocity signal shows a correlation of more than 70% at about 4 hours due to the
quasi-periodicity of p-mode peaks in the Fourier spectrum. The method then consists
in filling gaps of the velocity signal by data, when they exist, located 4 hours before
or after.

By using Monte Carlo simulations, we assess the effects of the gap filling method
on p-mode parameters and their errors. A way to remove the modulation, resulting
from the gap-filling method, in the power spectrum is proposed; its effects on p-mode
frequencies, linewidths, amplitudes and asymmetries are discussed as a function of

frequency and signal-to-noise ratio.
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1 INTRODUCTION

The presence of gap in full-disk velocity measurements
strongly affects the quality of p-mode parameters estima-
tion. For duty cycle lower than 100%, a part of the mode
energy is redistributed in sidelobe peaks located at 11.57
pHz around each mode peaks. The superposition between
both modes and sidelobes profiles, and the reduction of the
signal-to-noise ratio, lead to a p-mode parameter determi-
nation with a lower accuracy than the one-hundred-percent
duty cycle case (Fig. 1). For reducing systematic bias in p-
mode parameters measurements the presence of sidelobes
can be taken into account in a fitting procedure (Gelly et
al. 1988), but the corresponding error bars are still strongly
increased by the presence of gap in the velocity signal.

In order to increase the duty cycle of the time series, a
gap filling method called “Repetitive Music” (Fossat et al.
1999) is used (Fig. 1). Because of the quasi-perodicity of the
p-mode peaks in the Fourier power spectrum, the p-mode
velocity presents a correlation of 70 % at 4 hours (Gabriel
et al. 1999). Then the idea of the Repetitive Music is to fill
gap in the velocity signal by data, if they exist, located 4
hours before or/and after.

2 THE GAP FILLING METHOD

A way to assess the gap filling effects on the p-mode param-
eters is to use Monte Carlo simulations. Each realization
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is generated from the Fourier spectra having a x? with 2
degree-of-freedom distribution and a prescribed mean value
(Anderson et al. 1990, Toutain and Appourchaux 1994,
Fierry Fraillon et al. 1998). Simulations of the velocity signal
V/(t) are then computed using the inverse Fourier transform
of the spectra. On each simulation, the gapped temporal set
V,(t) is obtained by applying a window function W (t):

Vo(t) = V()W (2) (1)
The gap filling method is then applied on V,(t) as follows:

e a gap is not filled when there is no data 4 hours before
and after.

e a gap is filled by data located 4 hours before or after
when only one exist

e a gap is filled by the average of data located 4 hours
before and after when they both exist

The resulting gap filled velocity V(t) is given by:

Vi) = ) Valte)+ Y Velti—1)+ D> Vilti+7)
3 3 Waltn =) + Valtn + 7)) 2)

where 7 is the filling period (7 ~ 4h), t=t; is the case where
there is data only four hours before the gap, t=¢t; when there
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Figure 1. Observational window effects and gap filling results. a) Monte Carlo realization of an [=0-2 group, with a duty cycle of 100
%. b) same realization after applying an observational window on mode velocity, with a duty cycle of 55 %. c): same realization after
applying the gap filling method in the case of a one-hundred-percent recovery. The solid lines show the location of the =0 sidelobes
and the dashed lines are for the [=2 sidelobes. In the case of the gapped spectrum (b) a part of the mode energy is redistributed in
sidelobes peaks located at 11.57 uHz (because of the 24 hours periodicity in ground based observational window) around each mode
peak. The superposition between both modes and sidelobes, and the reduction of the signal-to-noise ratio, lead to a p-mode parameter
estimation with a lower accuracy than the one-hundred-percent case. For the gap filled spectrum (c) the sidelobes disappear, and the
power spectrum looks like the original one. In fact, the gap filled spectrum is modulated by a cos?(wv7)-type function which must be
taken into account in the p-mode parameters determination. The noise is lower in gap filled spectrum (c) than in the ungapped one (a)
because this modulation (dash-dotted curve, in arbitrary units) is indeed smaller than 1 away from the modes it matches.

is data only four hours after the gap and t=t, when there
is data both before and after the gap. N

On each simulated power spectrum, D(v)=|V (v)|? (un-
gapped) and Df(V)=|Vf(V)|2 (gap filled), the p-mode pa-
rameters are estimated using a maximum likelihood fit with
a model mode profile. Using 500 realizations, the probability
density function of each parameter is computed for estimat-
ing both its mean value and its error bar. In order to valid
the gap filling method, we compute and compare the sta-
tistical mean of p-mode parameters coming from the two
spectra (ungapped and gap filled).

3 MODELIZATION OF THE GAP FILLING
EFFECTS

The gap filled spectrum Dy (v) differs from the original one
D(v) by a modulation function (Fossat et al. 1999) that
must be computed in order to estimate correctly gap-filled p-
mode parameters. Equation (2) can be rewritten as a sum of
different time series using Vy(t) = ), Vi(t) where a partial
velocity set Vi(t) is composed by a part of the data of V(¢)
and settled by how its data points are used in the gap filling
method. In that case the gap filled spectrum depends on
cross products between the Fourier transform of the different
velocities and therefore on the correlation of data in time
serie:

Vo). Vi (v) = F [ / Vie(w).Vir (¢ — w)du (3)

where F denotes the Fourier transform and I7k(u) the
Fourier transform of the partial velocity set Vi (¢), and f}k* (v)
its complex conjugate.

The noise correlation depends strongly on the time
scales involved. For a white noise, there is no time corre-
lation whereas for a 1/v noise the correlation can be some-
what larger. The mode correlation depends stronlgly on the
mode lifetime: the modulation is then significantly different

for modes than it is for noise. To a first approximation, the
gap-filling technique is mainly driven by the result of the
time correlation term in Eq. (3). The amount of correla-
tion at the main shift time 7 determine the complexity of
the modulation function that we wish to calculate. This is
a simplified view of the calculation that we explain in the
following sections.

3.1 Decomposition of the gap velocity in partials
sets

A tricky way to compute the modulation function is to write
the gap velocity as a sum of partial sets of velocity which
do not overlap with each others:

Vo(t) =225 Va(t)

Vi(t1) Vi (81) =0 k#K

There are four differents basic ways of using a datum
for filling a gap (Eq. (2)): Vy(t+7), 2Ve(t+7), Vg(t—7) and
1V4(t — 7). We can use combinations of the basic moves in
order to respect an empty intersection between the differents
sets, and also to include the data not used for filling gap,
namely Vo(t).

+ (Va(t) + Va(t + 7))
+ (Vin(t) + Vi (t — 7))
+ (Vo (t) + Vom (t + 7) + Vom(t — 7))
+

Vi(t) + % Vit +7) + Vi (t — T)])

(

+ (Vum (t) + Vum (t — 1) + %Vum(t + 7'))
(Vup(t) + Vup(t+7) + %Vup(t - r))
(

1
Vimm (£) + §Vumm(t + T))
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Table 1. Classification of how a data point belonging to the
gapped velocity Vy belongs to the partial velocity V. The symbol
e denotes the presence of a data at the current position, and o a
gap.
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+ (Vupp(t) + %Vuw(t - 7')) (4)

Equation (4) is an another expression of Eq. (2) using the
decomposition of the gap velocity.

Each datum in the gap velocity is classified by how it
is used in the gap filling method and how one kind of data
belongs to one set of partial velocity. A data point located at
to, which belongs to the velocity set Vi(t), is used for filling
a gap located at to+7 and/or to — 7. The way the data point
is used (by average it or not) depends on the presence (or
not) of data at the position to + 27 (Table 1).

Then:

Viw) = D felr, Vi)
k
= Vo)
+‘7p(y) (1 + 627}7”/7')
+‘7m(7/) (1 + ef2ifru‘r)
+‘7pm(y) (1 +e2i7rl/‘r + e—2i1r1/7')

T 1 iTyT —2imrvT
) (145 [ + 7))
+‘7um(1/) (1 + %621'71'1/7' + 6727,'7”/7')

~ . 1 .
+Vup(1/) (1 + e?wru-r + 56—%7”/7—)

~ 1 o
+Vumm(’/) (1 + 562“””—)

T 1 _gimur
V() (14 5777 %)

where ‘7;9(1/) is the Fourier transform of V4 (¢). The gap filled
power spectrum Dy(v) is simply given by:

D;(v) = Vi(w)Vi (v) 6)

3.2 Case of noise

The solar noise in the power spectra can be typically mod-
eled by a superposition of stochastic processes having a given
lifetime or time scale (Harvey, 1985). Such processes are
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Figure 2. Effects of gap filling on noise. Black: Mean over 500
realizations of an ungapped white noise power spectrum. Gray:
Resulting mean power spectrum after application of the gap filling
method. Black solid line: analytical model of modulated noise in
the case of gap filled spectra computed using the initial value of
noise used in the simulation.

common place in electronics for instance (du Pré, 1950),
and lead to the so-called 1/v noise (1/v? in the power spec-
trum). The solar p modes are usually at high frequencies,
and a proper high pass filter remove the contribution from
the low-frequency part of the solar noise. In this case, the
noise in the p-mode frequency range can be assumed to be
locally white, or at least weakly dependent upon frequency.
By filtering out the low frequency part of the noise, we ex-
plicitly remove the long-term correlation of the noise, i.e.
the filtered noise correlation is close to zero (apart from
the auto-correlation value at ¢t = 0). Then, considering that
there is no overlap between the partial sets of velocity and
assuming that the filtered noise has no significant correla-
tion, Eq. (3) gives:

>= by

Vi (v)

< Vi)V () >~0  k#K,

where <> denotes the statistical mean and b; the noise
value in the power spectrum Dy (v). If the noise were to
be indeed correlated, there would be no real difficulty in
calculating the modulation extracted below. It would simply
add unnecessary complications that we can alleviate by a
high pass filter.

Then, from Egs. (5) and (6) the noise in the gap filled
spectrum by can be written as a sum of noises b in the par-
tial spectra multiplied by a modulation function M, (v, T):

<bs>= Z < b > My (v, 7) (7)
k

In the case of noise, the effect of the window function in
the power spectrum, as a consequence of the theorem of
Parseval, is to modify the noise amplitude according to the
duty cycle of the temporal set. Then each by, is proportional
to the noise in the ungapped power spectrum b:

<bp>=ar<b> (8)
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Figure 3. Effects of gap filling on modes, case of a signal-to-
noise ratio of 20 for the {=0 mode, average spectrum over 500
realizations. Black: ungapped spectrum for a [=0-2 group, com-
puted using an initial set of parameter ag. Gray: corresponding
gap filled spectrum. Black solid line: analytical model of modu-
lated mode profile, computed using the same ag. In that case, the
analytical model recovers the simulated one.

where oy, is the duty cycle of the partial time serie. Then,
from Eqgs (5), (6) and (8), the theoretical modulation func-
tion for the noise is given by:

The mean noise in the gap filled spectrum <bs> is
then proportional to the mean noise in the original spec-
trum <b>:

<bs >= Mp(v,7) < b> 9)
And,
My(v,7) = a0+ (ap+ am) [4 cos2(7rvr)]

+apm [1 + 2 cos(2mvT)]?

+ (Qum + Qup) [% + 3cos(2mwvT) + cos(47r1/7-)]

1
+ (Qupp + Cumm) [Z +2 cos2(7ru7')]

+ay, [1 + cos(2nvT))? (10)

My(v,7) can be obtained without the help of the original
spectrum D(v) and only with the knowledge of the window
function. Figure 2 shows that the noise modulation M, (v, T)
recovers the effects of the gap filling method on noise.

3.3 Case of modes

The case of the modes is different that of the noise in the
sense that their time correlation has to be taken into ac-
count. A p mode, with a lifetime varying from 3 days (at
v ~ 4 mHz) to 24 days (at v ~ 2 mHz), presents a corre-
lation of about 80 % at 4 hours and therefore the velocities
cross terms can not be assumed equal to 0:

<‘@002>:LMW

< Vi)V (v) >= Ly ()9 @) | K

where Li(v) is the mode profile in the power spectrum
computed from the partial velocity Vi(t). The partial sets
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Figure 4. Effects of gap filling on modes, case of a signal-to-
noise ratio of 200 for the {=0 mode, average spectrum over 500
realizations. Black: mean ungapped spectrum for a [=0-2 group,
computed using an initial set of parameter ag. Gray: correspond-
ing gap filled spectrum. Black solid line: analytical mode profile
for gap filled spectra computed using the same ag. In that case,
the analytical model does not recover the simulated one but the
differences are located in the wings of the mode peak.

of velocity are coming from the same velocity V (), then
the cross-terms <1//;c(1/)‘7k*, (v)> are complex with a modu-
lus L proportional to |17(1/)|2, and a phase ¢gp (V).

Because of the mode lifetime, <¢g(v)> is not sup-
posed to be equal to zero. In fact, the value of <z (v)>
is strongly dependent on the noise value: the addition of a
stochastic noise to the whole velocity time serie lead to a loss
of correlation between two points coming from two different
partial velodity sets. We can expect from <@y (v)> to be
larger when the noise is equal to zero; and to tend toward
zero when the signal to noise ratio is decreased. However,
considering <¢gxs (¥)> = 0 in the computation of the mode
modulation function is a good approximation as it is shown
hereafter (See Appendix A).

In the case of modes, the effect of the window func-
tion on the mode profile L(v) (Lorentz or asymmetric) is to
redistribute a part, proportional to the duty cycle, of the
mode energy in sidelobes located around L(v). Then a good
approximation of the mode profile Ly () in gapped spectra
is given by:

Li(v) =~ ap L(v) (11)

where «j is again the duty cycle of the partial time
serie. Since the partial velocities Vi(t) and Vs (t) are
different sampling of the same velocity V(t), the cross
terms <‘7k(1/)‘7,:, (v)> are proportional to <|17(1/)|2> when
<@g (v)> = 0. Then, for the mode profile:

<Vi@)Viw)> = VL)L ()
= arawL(v) (12)
Eq. (12) is only valid for the computation of the mode mod-

ulation function and for low signal to noise ratio. Then, from
Egs. (5), (6), (11) and (12), we have:

© 2001 RAS, MNRAS 000, 1-10
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< Dy(v) >

Do) < ) >
k

+ Y @) i (v, 7) < V@) Vi (v) >

B,k
+i ) for (0, 7) < Vi () Vo (v) >]
= [Mi(v,7)+ Mic(v,7)]L(v) (13)
where M;(v, 7) is the modulation function due to the direct

terms |‘7k (»)|?, and M.(v,7) the modulation function due

to the cross terms V; (v).Vi (v). M;(v,7) is obtained from
Egs (5), (6) and (11):

M) = Y ailfily, )
k

= ap+ (o +ay,) [4cos’(7vT)]
+a, [1 +2cos(2mvT)]?
+ (aim + ai,,) [% + 3cos(2mvT) + cos(47rur)]

+ (0 + @) [ + 20087 (rvr)]

+a?2 [1 4 cos(2mvT)]? (14)
M. (v, T) is obtained from Egs (5), (6), (12) and (13):

Mic(v,7) =e1(v,7) + e2(v, 7) (15)
where:
e1(v,7) =2 arap R(fi(v,7) fir (v, 7)) cos(drp () (16)
k,k'
And,
e2(v,r) = =23 awa T(fulv, 7) i (v, 7)) sin(b 0 () (17)
k,k'

where R and Z means respectively the real and the
imaginary part of a complex number. By considering
<@g,k (¥)>0, e2(v,7) is neglected (Appendix A2). The
function M (v, ) is described in more details in appendix
A3. Then:

Mio(v,7) =2y arapR(f(v, ) fio (v,7)) (18)

k,k’

The mean mode peak in the gap filled spectrum <Ly (v, 7)>
is then proportional to the mode profile in the original spec-
trum <L(v)>:

<L¢(v,7)> = [M(v,7)+ Mic(v,7)] < L(v) >
= Mi(,7)L(v) (19)

Figures 3 and 4 shows the efficienty of the gap filled spec-
trum modelisation for two signal-to-noise ratios in the case
of a one-hundred-percent duty-cycle recovery. The analyti-
cal mode modulation My (v,7) has been approximated for
low signal-to-noise ratio. We have neglected some terms in
the analytic expression of M;.(v, T) because theses terms are
minimum close to the mode frequency (Appendix A) and
tend to 0 when the signal-to-noise ratio is decreasing. Then
the gap filled mode model recovers the simulated gap filled
spectrum for low signal-to-noise ratio (Fig. 3) while it does
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not totally for higher signal-to-noise ratio (Fig. 4). In addi-
tion, as shown hereafter, neglecting some terms in My, (v, 7)
does not lead to a measurable bias on p-mode parameters.

3.4 p-mode parameters determination

The fact that the modulation is different for modes and
noise, Egs. (9) and (19), implies that there is no way to com-
pute a demodulated power spectrum, from the gap filled one,
without the knowledge of p-mode parameters that we wish
to determine. Therefore a way to estimate p-modes param-
eters on gap filled spectra is to fit a modulated mode profile
using the modulation function My (v,7) and My (v, 7).

The model of the mode profile L., (a,v,7) in gap filled
spectra, where a is the set of mode parameters, depends
on the gap distribution in the window function and on the
value of the filling period 7. The noise modulation M (v, T)
and the mode modulation Mz (v, 7) does not depend on the
mode parameters. The modulated mode profile is given by:

Ln(a,v,7) = Lo(a,v)Mr(v,7) + bMy(v, ) (20)

where Lo(a, v) is the usual mode profile (Lorentz or asym-
metric profile) and b is a noise constant value.

The gap filled p-mode parameters {ar} are estimated
by a maximum likelihood fit of gap filled spectrum with
the mode model L, (af,v,7). We have checked, using a
Kolmogorov-Smirnov test, that the statistical distribution
of the gap-filled spectrum was indeed a x* with 2 degrees
of freedom. In addition, we have checked that adjacent fre-
quency bins had a level of correlation no greater than 1%
after filling the gaps; it was no larger than 8% before doing
so (this latter level is comparable to the one given for LOI
and GONG data by Appourchaux et al, 2000).

We may then expect some bias in the measurement
of {ar} for high signal to noise ratio cases because of the
approximation of My (v, 7). For low signal-to-noise ratio a
maximum likelihood fit by the modulated model should pro-
duce a correct estimation of the parameters (Fig. 3), but for
higher signal-to-noise ratio the estimation of mode parame-
ter by using the analytical gap filled profile might produce
some bias which will mainly affect asymmetry and noise
(Fig. 4).

When the gap filling method does not produce a one-
hundred-percent duty cycle recovery on the gap filled spec-
trum, the computation of the modulation function remains
the same. The differences are in the values of the partial
duty cycle ratios a,, and in the mode model used which
must include sidelobes (Gelly et al. 1998).

4 RECOVERING THE CORRECT VALUE ?

Monte-Carlo simulations were performed to assess whether
we can recover the p-mode parameters without significant
bias. Five hundred time series lasting 2 months and sampled
at 45 s were simulated. The window function used is a gen-
uine IRIS window function (David Salabert private commu-
nication) modified in order to obtain a one-hundred-percent
duty cycle after gap filling. When the gap filling method
is applied with the original IRIS window function the duty
cycle reachs from 55% to 96%. For reaching a 100 % duty
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Figure 5. Recovery as a function of signal-to-noise ratio, N=500 simulations. Differences between the gap filled parameters ay and
the target value ag used in the simulations; top left: amplitude (AA =<Af>—Ag), bottom left: frequency (Av =<vy>—1p), top right:
linwidth (AT =<T'y>-To), bottom rigth: asymmetry (AB =<Bjf>—Bo). The dashed error bars are error bars corresponding to one
single realization (04 ), and the solid ones are the error bars at 3¢ on Aay (304, /+/500). The upper and the lower dotted lines correspond
to the relative dispersion of the parameter: AA/A = £25%, AT/T = +25%, AB/B = £25% and Av/v = +0.01%. As expected from
Fig. 4 the asymmetry is the most sensible mode parameter to signal-to-noise ratio.

cycle the window function has been modified by substitut-
ing a 0 by a 1 on 4% of the time serie length, it corresponds
to the presence of gap without data located 4 hours before
and after. After filling the gaps the spectra are fitted as de-
scribed above. The goal is to make the comparison between
the parameters fitted on a spectrum of ungapped data and
the parameters fitted on a spectrum of gap-filled data.

4.1 Variations with signal-to-noise ratio

Monte Carlo simulations of a single asymmetric mode
(Nigam et al. 1998) are computed for several signal-to-noise
ratios in order to validate the approximation in the mode
modulation function M;.(v,7). The gap filled parameters
{ar} = {Af,vs, 'y, By}, and their error bars, are estimated
by modeling their probability density function using N=>500
statistical realizations.

Figure 5 shows the recovery of single mode parameters
as a function of signal-to-noise ratio. The approximation of
the mode modulation function does not lead to a measur-
able bias for frequency. For linewidth and amplitude, the
bias becomes significant for signal-to-noise ratio greater than
1000 whereas this limit decreases to 80 for asymmetry. As
expected from Figs. 3 and 4 the approximation in the an-
alytical mode profile produces a measurable bias for high
signal-to-noise ratio affectying mainly asymmetry. However,
the bias for asymmetry is well within the error bar of a single
realization for signal-to-noise ratio lower than 600.

The analytical model is not strictly valid for high signal-
to-noise ratio, and differs from a perfect one in the wings
of the mode profile, therefore frequency estimates are not
affected by the variation of signal-to-noise ratio. The esti-
mation on amplitude and linewidth for signal-to-noise ratio
higher than 1000 gives a measurable bias: the amplitude is
under-estimated (AA <0) and the linewidth overestimated

© 2001 RAS, MNRAS 000, 1-10
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Figure 6. Recovery as a function of frequency, N=>500 realizations. The values of Aa =<ag —a> and of the uncertainties are estimated
on their probability density function. For one Monte Carlo simulation, a is estimated on the ungapped spectrum using the mode profile
L(a,v) and ays is estimated on the gap-filled spectrum using the mode profile Ly, (af,v, 7). The error bars plotted are 1-o error bars
corresponding to o aa/+/500. There is no evidence of a systematic bias as a function of the frequency, and therefore function of the mode
lifetime. Even if the difference Aa does not always match 0 at a 1-o level, 84 % of the points match 0 at a 2-¢ level, the values of Aa
are really small and are well negligible when compared to the uncertainty of a single realization (caa).

(AT >0). This is due to an over-estimation of the noise, as 4.2 Variations with frequency.
shown in figure 4 a fit on the gap filled spectrum gives a ] o )
greater noise estimate than the target one. The data used are simulated velocity in full-disk measure-

ment with a duration of observation of 2 months. The signal-
to-noise ratio varies from 1 to 200. Only / = 0, 1 and 2 p
modes from 1.5 mHz to 4 mHz are present.

© 2001 RAS, MNRAS 000, 1-10
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Monte-Carlo simulations of ungapped and gap filled
spectra are used for estimating the parameters and their
error bars. The gap filled spectrum is computed using
the value of 7 corresponding to the mode group studied
(A7/7=20.04%). The precise value of the filling period is
determined by placing the maximum of the modulation on
the mean frequency of a mode group (cos®(wv7)=1 for which
v = (V=0 + Vi=2)/2).

Figure 6 shows that there is no systematic bias for all
parameters but the linewidths. There is an indication that
the linewidths might be underestimated by no more than 1
%. The differences between the gap filled and the ungapped
parameters are clearly negligible when compared to the error
bars for a single realization, for caa < 0a (UZa = ogf +o2—
20a,0ar, where the correlation between the two parameters
r is close to 1).

5 DISCUSSION AND CONCLUSION

An analytical mode profile has been tested for gap filled
spectra obtained by the “Repetitive Music” method (Fossat
et al. 1999). This modulated profile depends on the distri-
bution of gap in time series and can be estimated only with
the knowledge of the temporal window function.

‘We show that fitting gap filled spectra using this analyt-
ical model allows to recover the correct p-mode parameters,
when the signal-to-noise ratio is lower than 600 and when
the correct value of the filling period 7 is used. The value of
7 is settled by centering the cos®(7vT)-type function on the
frequency of the group of modes studied, however we can
imagine some refinement of the method by centering the
modulation on a mode instead of a group of modes (David
Salabert, private communication).

This gap-filling method can be used for any solar seis-
mic data (either ground- or space-based) but also for any
stellar seismic data. For example, stellar data acquired at
one site have typically 16-hour data gap. For such gaps, the
ideal candidate would be a star with a large separation cor-
responding to 68 pHz giving maximum temporal correlation
at 8 hours (i.e. respectively 136 pHz and 4 hours in the solar
case). This would put the duty cycle to 100%. Unfortunately,
this ‘best’ scheme will produce a modulated spectrum that
will look like what is looked for, e.g. regularly-spaced peaks.
This gap-filled method is in any case rather suited when the
data are partially replicated: two stations is better than one.

The interest of the method is then to increase the duty
cycle of any gapped asteroseismic data without losing in-
formation on p-mode parameters. The signal-to-noise ratio
is increased and the presence of sidelobes is limited leading
to a p-mode parameters estimation with a better accuracy,
and negligible systematic bias. This gap filling method, and
the derived mode profile, can be applied in the p-modes
frequency range on all kind of full disk data. It concerns
mainly ground based experiment looking at the Sun (BI-
SON, IRIS, LOWL-integrated, GONG-integrated) or Pro-
cyon (ELODIE) but also space data (ACRIM).
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APPENDIX A:
A1l Phase estimate

The main difficulty in the computation of the mode modu-
lation function is the estimation of the phase of the velocity
cross terms:

< V(W) Vi (V) >= L (0)e v @ g £} (A1)

Figure A1 shows the phase for four differents signal-to-noise
ratio of the < Vo(v)Vupp(v) > cross terms, which gives the
most important contribution (ao = 51% and aupp = 15%),
in the case of a single mode. As expected, the cross terms
phasis tend toward their minimum when the signal-to-noise
ratio is decreasing. Figure A3 shows that cos(éxn(v)) can
be assumed equal to 1 in a frequency range close to the
mode frequency. On the other hand, as shown in Fig. A2,
sin(¢pgx (¥)) can be assumed close to 0 in the same frequency
range.

A2 Neglecting (v, 7)

Let’s note e2(v, 7) the contribution to the modulation func-
tion of the imaginary part of the velocities cross terms:

e2(v,7) = > Tow T(fu (v, ) fi (v, 7)) (A2)
k,k’

where Z means the imaginary part of a complex number
and:

Jkk’ = QO sin(¢>kk/(1/)) (AS)

© 2001 RAS, MNRAS 000, 1-10
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Figure Al. <¢oupp(v)> for four differents signal-to-noise ra-
tio in the case of a I=0 mode (vj—¢ = 2629.73uHz, solid line).
Mean over 500 realizations of the phasis of the velocity cross-term
<Vo(¥)Vupp(v)>, which gives the main contribution to the cross
term computation (Vo(t) and Vypp(t) correspond respectively to
51% and 15% of Vy(t) for the window function used). When the
signal-to-noise ratio is decreasing, the cross term phasis tend to-
wards zero in the whole frequency range except close to the mode
frequency.
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N
:
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Figure A2. <sin(¢oupp(v))> for four different signal to noise ra-
tios (same than figure A1). Dashed line: mode profile. Gray/black:
mean over 500 realizations of <sin(¢oupp(v))>, the value of
| <sin(@oupp(v))>| increase when the signal-to-noise ratio is in-
creasing. Note that the values for A;—¢/b=4000 (gray) and for
Aj=0/b=400 (black) are similar, whereas it is clearly lower for
Aj—0/b=40 (gray) and almost zero for A;_,/b=4 (flat black).

Then:

e2(v,7) = sin(27v7)(2Jop — 2Jom — Joum + Joup — Joupp
+Joumm — Jpumm + Jmupp + Jmum
—Jpup — 4Jpm + 2Jumup + 2Jumumm
—2Jupupp — 3Jmup — 3Jpum + 3Jmumm

_3JPUPP - 2Juppumm)
3
Jpup — 2Jpm + §Jumup
+Jumumm — Jupupp + 2Jmup — 2qum
1

- 2JPU»PP - 5‘]“’”1“?1’

+  sin(47v7)(Jmum —

+2Jmumm
1 1

_§Juppumm - 2Jupumm)

+  sin(2rwr)(cos’ (7v 7)) (Juup — Juum
F+Juumm — Juupp
+2Jmu — 2Jpu)

+ sin(2rv7)(4cos’ (7v7) — 1) (2Jmpm — Jpmum

_meupp + meumm

_ZJPPm + meuP) (A4)

In a frequency range close to the mode frequency
€2(v, 7)L(v) can be neglected because e2(v,7) depends on
the product between sin(2prv7) (p=1, 2) and sin(¢gr (v)).
On one hand, the value of 7 is chosen in order to have
cos(2pmvT)=1 for the mode frequency, sin(2prvT) is then
close to 0 in a frequency range close to the mode frequency.
On the other hand, as shown in Fig. A2, sin(¢grr(v)) can
be assumed close to 0 in the same frequency range. For
high signal-to-noise ratio, neglecting e2(v, 7) produce a bias
in the p-mode parameter measurement: ez (v, 7)L(v) gives a
non-negligible contribution in the wings of the mode profile
(Fig. A2) leading to an over-estimation of the noise and af-
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fecting parameter estimation of asymmetry, amplitude and
linewidth.

A3 Estimate of ¢:1(v,7), the mode modulation
function

Figure A3 shows that cos(¢x ()) can be assumed close to 1
in a frequency range close to the mode frequency. Therefore,
the mode modulation function for the velocity cross terms
M (v, T) is given by:

MZC(U) = Zakak’Mlc,k,k’ (VaT)
k,k’

+2(0ap + @oam + a0 + aopm) [1 + ¢1
+(@o0um + aoowp) [2 + 3c1]

+H(oQupp + 0Qumm) [2 + c1]
+2(apam) [1+ 2¢1 + ¢2]

+2(apany + amay) [1 +ei]’

+2(apapm + amapm) [1 + 3c1 + 20%]
+(apaum + amawum) [3 + 3c1 + 2¢2]
+(apQup + Amawp) [4 + 5e1 + ¢2]
+(apupp + AmQymm) [2 + 3c1 + c2)
+3(Qm Qupp + ApQumm ) [1 + 1]
+oapm [+ 3e1 + 2] |

+(QuQum + Quup) [2 +5¢1 + 3c%]
F(uupp + 0 Oumm) [2 + 3c1 + Cﬂ
+(0pmQup + Cpm Qum) [2 + 7c1 + ﬁc%]
+(Qpm Qupp + Opm QCumm) [2 +5¢1 + QCf]

+Qym Qup [4 + 6c1 + 202]

1
FQuppQumm [2 +2c1 + 502]

1
+(aumaupp + Olupaumm) [3 + 4c1 + 502]

5
+(QumQumm + QupQupp) [5 + 6e1 + Cz] (Ab)

where ¢1 = cos(27vT) and c2 = cos(4nvT).

Considering L(v)<cos(drn(v))>=L(v) for high signal
to noise ratio becomes wrong in the wings of the mode profile
(Figs. A2, A3 and 4).

m?s 2mHz ™t
N
:

2.6 2.61 2.62 2.63 2.64 2.65 2.66
frequency (mHz)

Figure A3. <cos(¢oupp(v))> for four different signal to noise ra-
tios (same than figure A1). Dashed line: mode profile. Gray/black:
mean over 500 realizations of <cos(¢oupp(v))>, the value of
|<cos(Poupp(¥))>| decrease when the signal-to-noise ratio is in-
creasing. Note that the values for A;—¢/b=4000 (gray) and for
Aj=0/b=400 (black) are similar, whereas it is clearly lower for
Aj—o/b=40 (gray) and almost one for A;_y/b=4 (flat black).
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