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ABSTRACT

Herewe report on the results of ahare-and-hound exercise performed by the Data Reduction
Group. Spectra of 6 different stars have been ssimulated and fitted for extracting the small and
large separation of the stars. Rotational splittings were aso fitted. The ability of the group
for detecting low-degree stellar p modesis at least proven on high signal-to-noise ratio spectra.
Further work will be needed for making the simulation more real and less easy. A new hare-
and-hound exercise is already planned.

1. Introduction

Hare-and-hounds (H-H) exercises are commonly performed in helioseismology. These kinds of blind
tests are heavily linked towards testing inversions. In the recent years, the emphasis has slowly shifted to
testing any alleged technique thought to detect g modes. A similar approach for detecting stellar p modesis
now envisaged since the strongest modes might be at the limit of detection.

Hereafter, we describe first how the stellar time series are simulated, second how the synthetic spectra
are fitted and/or the stellar p-mode parameter extracted. Then, we discuss the different techniques of
detecting stellar p modes. We close the report by looking how the simulation can be improved, and set
the scene for the next round of H-H.

2. Spectrum simulation

In helioseismology, the solar p modes are stochastically excited by convection. It results that the
statistics of the spectraiswell known: itisa y % with 2 degrees of freedom (Woodard, 1984; Anderson et al.,
1990; Appourchaux et al., 1998). For stellar p modes, we have taken the same assumption. As soon as the
Fourier spectra can be calculated, the inverse Fourier transform provides the time series. It is not necessary
to excite the p modes in the time domain as performed by Barban et al. (1999). The former is more efficient
than the latter.
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Fig. 1.— Linewidth and amplitude of the modeled stellar p modes as a function of frequency for different

stars. They are here independent of age.
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Fig. 2— Modeled background stellar noise as a function of frequency for different stars. The time scales
are alinear function of mass. The amplitude of the 3 different noise are independent of age and mass.

In both cases, we need to know how one can simulate properly the characteristics of the stellar
spectrum, namely: Mass, Age, Temperature, Fine internal structure, Internal dynamics, Mode excitation
and damping, Stellar and Instrumental noise.

The first three items determine the central frequency (vo), the large (Avy), the small separation (D)
and the smaller separation (do) (Christensen-Dalsgaard, 1984). The essential data were taken from Audard
& Provost (1994) and wereinterpolated from 1 M, to 2 M, and from agrid of hydrogen content X ranging
roughly from 0. to 0.7. For mass lower than 1 M, we extrapolated the interpolation down to 0.8 M ,. The
formulawas used for getting the frequencies of modes! = 0 to 3; modes of higher degree were not included
in the simulation.

The mode excitation and damping was derived from the work of Houdek (1996) and of Houdek et al.
(1999). The amplitudes and linewidths were often extremely simplified. Figure 1 gives an example of the
variation of the linewidth with frequency for various stellar masses. Since the model was done very quickly,
it is quitelikely that these figures do not exemplify fine details as reported by Houdek (1996); it should be
taken only as a starting point for a finer modeling.

For simulating the internal dynamics of the stars, we assumed that the stars rotate rigidly with their
rotation axis perpendicular to the line of sight. As for the distribution of amplitude with the degrees, we
assume that the relative amplitudes follow the geometrical visibilitiesusually used for the VIRGO data and
IPHIR data (Toutain & Frohlich, 1992).

The noise was derived from that of the solar noise. For the stellar noise, we arbitrary decided that the
time scales defining the various super-, meso- and granulation noise be scaled like the stellar mass (i.e. the
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heavier the star the longer the time scales) like shown on Fig. 2. Of course, a better work needs to be done
for the noise if we want to make the simulationsmore real.

The simulated time series are 1 month long with a 30-s sampling time. Six time series were simulated
for six different stars which main characteristics are given in Table 1. The data were blindly generated so
that even the hare could play the role of the hounds.

Star Mass(in Mg) X, Avg Q. (inp H2)

1 133 023 84.90 1.00
2 123 0.39 106.80 0.56
3 1.86 0.69 81.20 1.50
4 1.26 013 87.50 1.50
5 121 0.58 120.10 0.25
6 0.85 0.17 151.40 0.69

Table 1: Main characteristics of the simulated stars. X . isthe hydogen content, and €2,. is the rotation rate
of the star asarigid body.

3. Dataanalysis
3.1. Echellediagram

One of the simplest, quickest and dirtiest method to detect the large separation and other details of the
stellar p-mode spectra is to produce an Echelle diagramme. The original idea was from Grec (1981) who
used the asymptotic property of the solar p modes for showing how each degree would line up in such a
diagramme. The Echelle diagramme consistsin cutting in pieces of Av the spectra of the star, and then to
pile up these pieces on top of each other. If modes are indeed detected vertical lines should appear clearly
in the diagramme. The trick isrealy to find the Av that would produce such ‘vertica’ lines. With some
experience, and with simulated data with high signal-to-noiseratio, it takes just a few tens of minutesto get
the proper separation. Trial and error will do especially on a Friday afternoon before the week-end.

Figure 4 showstheresultsof thisprocedure, and Table 2 givesthe large separation obtained accordingly.

3.2. Histogram

This technique was developed by Barban et al. (1999). Figure 5 shows the result of this procedure.
Table 2 gives the large separation obtained with this technique.
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Fig. 3— Power spectra (smoothed to 1 ;1Hz) for the 6 synthetic time series. The signal-to-noiseratio is at
best about 100.

3.3.  Maximum likelihood fitting

Thetechnique used for fitting stellar spectraisthe same asfor full-disk solar spectra Toutain & Frohlich
(1992). We use Maximum Likelihood Estimators known as MLE, for a review see Appourchaux et al.
(1998). Table 2 showsthe result obtained; all the mode frequencies are available upon request (ask ThierryA
or Toutain for details).

4. Discussion

Itisquite clear that the helioseismol ogistswere at an advantage mainly because they were at the end of
the processes: synthetic data production (ThierryA) and MLE (Toutain). Asamatter of fact, theanalysisand
simulation performed are too closely related to solar-type stars. Nevertheless, thisbias created an interesting
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Fig. 4— Echelle diagrammes for the 6 synthetic stellar spectra. The modes can be identified according to
the way the ridges are split. For instance, the top left diagramme shows clearly from left to right, the (=3, 1,
2, 0ridges. The parabolic curvature of the ridgesis due to the asymptotic formula used.
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Fig. 5.— Histogrammesof the stellar spectraascomputed by Barban et al. (1999). Thelargest peak indicates
the location of the large separation. The second two largest peaks display the mean structure of the mode
located at |Al| = 1. The sub-structure of within the largest peak isa manifestation of the splitting (See time
seriesOand 3, i.e. stars1 and 4)
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Star Mass (in Mg) A (in p Hz) Q, (inpu H2)
Echelle MLE Histo. Echelle MLE Histo.
1 1.33 85.0 854 90.0 - 0.963+ 0.034 -
2 1.23 106.0 107.0 108.0 - 0.507 + 0.016 -
3 1.86 81.0 815 80.0 - 1.502 + 0.013 -
4 1.26 88.0 885 870 - 1.520 + 0.012 -
5 121 1200 120.0 120.0 - 0.196 + 0.022 -
6 0.85 152.0 152.0 151.0 - 0.659 + 0.019 -

Table 2: Main characteristics of parameters derived from the 3 main anaysis techniques.

‘bug’: the psychological approach used by one of the fitter made him thought that the data producer may
have forgotten to produce synthetic datafor a star with an inclined rotation axis. The simulated datawere a
bit too easy to play with: amore realistic and a more noisy spectrum should be simulated in the future.

Asfar asthe simulation is concerned, several improvements should be included such as:

e Inclined rotation axis

Differential rotation

e Better linewidths and amplitudes

More realistic stellar noise

Lower signal-to-noiseratio

Asfar asthe H-H exercise is concerned, we will likely make afull H-H involving 2 complete teams of
M odel ers-Observers doing a double blind H-H using simulated data from the other team. This activity has
been started and will be reported during the next team meeting.
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ABSTRACT

& Scuti stars are high amplitude, nonradial multiperiodic oscillators. The major problem is
the identification of the observed frequencies as specific oscillation modes, however thisstep is
important to provide constraints upon the internal structure of the star.

We show here that despite the complicated frequency distributionswhich can be expected
from COROT space missionfor atypical § Scuti star, it will be possibleto identify at least some
modes or at least the degree for low-¢ modes from space data.

1. Introduction

The ¢ Scuti stars are pulsating variables located in the lower part of the classical instability strip with
spectral type from A2 to FO. They are multiperiodic pulsators oscillating with large amplitude compared
to solar-like oscillations (amplitudes from ground-based observations range between a few mmag to 1/10
mag) and periods less than 0.3 days. Only afew 5 to 10 frequenciesin general and in some cases up to 30
frequencies in the case of FG Vir (Breger et al. 1998) have been detected from the ground. The observed
frequencies span an interval in which models predict much more frequencies than observed. Either the
corresponding modes are not excited or they are excited up to much smaller amplitudesthat can be detected
from ground-based observations. We do not yet understand how modal selection operates, this preventsto
identify firmly modes associated with individual frequencies (e.g. to determine the degree, azimuthal order
and radial order of each mode) and therefore to take full advantage of the available seismological tools. A
better knowledge of the global structure of the frequency spectrum would provide preciousindicationsabout
modal selection processes. Thisrequiresto detect oscillationswith much smaller amplitudes and therefore
to increase significantly the signal-to-noiseratio.

Observations from space will be characterized by a much higher signal-to-noise ratio than from the
ground. Thiswill result in the detection of a much larger set of modes for each ¢ Scuti star, by detecting
new small amplitude modes and high degree modes. Indeed, high ¢ modes are expected to be excited but
visibility effectsi.e. averaging geometrical effects when observingin integrated light, decrease the observed
amplitudesto much smaller valuesthan can be observed from the ground. But the detection of amuch larger
number of frequencieswill yield frequency spectravery much complicated and thenitislegitimateto wonder
whether modeidentificationwill not be even more difficult to obtain (Dziembowski et al. 1998)? The purpose
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of thiswork isto show how, in space data, it is possibleto identify at |east some modes or at least the degree
of the low-¢ modes, and this despite the complications due to the presence of high ¢ modes.

Spectroscopic or photometric techniques have been deviced to identify modes (Garrido et al. 2000).
Thiswork is a progress report on our effort to develop an alternative method which does not involve any
knowledge of a model and using very precise data, i.e. frequencies, rather than amplitude and phase. An
ideal casewaspresentedinBaglinet a. (2000). In thispaper, modesupto /= 10 were assumed to be detected
with the low detection threshold of space data. The detected range of frequencies was assumed to be broad
enough toward high frequenciesand then it included lower frequency part of the asymptotic p-mode regime.
It was shown there that although the frequency spectrum is more complex than the one from ground-based
observations, it is still possible to obtain the mean value of the large separation and to proceed further in
attempting to determine the degree of at least some modes which will constitute the cornerstone of a mode
identification.

However from ground-based observationsthe detected frequencies do not include part of the asymptotic
regime. We do not know whether space datawill provide frequenciesin the asymptoticregime. Inthe present
paper, we therefore discuss the case where these frequencies are not detected. Section 2 describes how the
frequency spectrum is built. In Section 3, patterns are searched using frequency spacing histograms. Then
echelle diagrams are computed. Discussion and perspectives are given in Section 4.

2. Amplitudedistribution: visibility effect

We consider a 1.85 M, model (see Baglin et al. 2000 for more details) and retain modes with degree
from 0 to 10 with frequencies in the theoretical unstable range [80-410]:Hz given by the oscillation code
written by W. A. Dziembowski (1982). High frequencies which falls in the asymptotic regime are not
included. The oscillation amplitudes are computed in the COROT photometric system (370-950 nm),
according to Watson (1988) for the flux changefor anonradial pulsation. Stellar model atmospheresare built
for that specific purposewith ATLASO (Heiter etal. 2001inprep.) and consistent limb darkening coefficients
computed (Barban et a. 2001, in prep.). For the non adiabatic phase lag between temperature and pressure
variations, we use the values given by Dziembowski’s oscillation code. The intrinsic amplitude is assumed
to be the same for all the modes and is chosen so that /= 0 modes have an amplitude of 1 mmag astypically
observed from the ground. For the amplitudes of modes with higher degrees, we used the amplitude ratio
with /= 0. The amplitude ratio depends on the inclination to the line of sight. We averaged the amplitudes
obtained for values of the inclination to the line of sight of 0, 20, 40, 60, and 80 degrees.

Figure 1 with atypical result illustratesthevisibility effect. Inthe case of Fig. 1, from theground witha
maximum amplitude of 10~ inrelative flux, we are able to detect some (=0, 1 and 2 modes and from space
with COROT, we will see some ¢= 0,1,2,3,4,6,8 and 10 modes. So depending on the threshold, we must
expect to detect more or less modes with different /. Whether odd highest ¢ modes (5,7,9) will be detected
depend onintrinsic amplitude and detection threshold. The different feature for even and odd modesfrom (=
4 is attributed to geometric and limb-darkening terms of the expression of flux change. Similar results have
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been obtained by Balona & Dziembowski (1999) and by |. Roxburgh (private communication).

To be more redlistic, we have adopted an amplitude distribution which looks like FG Vir data (Breger
et a. 1998). We arbitrarily defined an amplitude distribution with gaps which yields a frequency spectrum
looking like the one of FG Vir. (Barban et al. 2000).

3. Search for patternsin the frequency spectrum

Although the considered oscillation modes are not in the asymptotic regime, We nevertheless search
in the frequency spectrum built in Section 2 for some frequency equidistances. Differencies between two
frequencies are computed to build a histogram of these differencies which we call a frequency spacing
histogram(e.g. Breger et al. 1999).

When all the unstable mode frequencies are included, no specific structure can be detected. The
histogram is perturbed by high ¢ modes which do not respect the equidistance and by mixed and g modes
(Barban et al. 2000).
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If now we turn to the CORQOT case, no significant improvement is obtained when we keep the unstable
modes with amplitude above 2 10=6. The histogram is still perturbed by nonequidistant modes as in the
precedent case. The same istrue when we remove high ¢ modes which perturb the histogram by increasing
the amplitude threshold. That means that now we keep modes with amplitude higher to 10 =° (Fig. 2)

Because mixed modes of low degree contaminate low frequency regime, we keep the same amplitude
threshold of 10~ and remove the low frequency modes which are mostly mixed modes and perturb the
histogram. Figure 3 shows:

- an excess of signal between approximately 40 and 50 pHz with a strong peak at 40 ;:Hz. This peak
is interpreted as a mean vaue of the large separation (Av, Av = v, — v,_1,¢), Which differs from the
asymptotic value, i.e. 47 uHz.

- alow frequency decrease. Thedecrease at low frequenciesisattributed to the remaining mixed modes.
From the ground with a detection threshold of 10—, we would obtain Fig. 4.

We have shown here that from space data it is possible, at least, to recover a mean value of the large
separation which is not the asymptotic one but which can help to identify modes as we will seein the next
Section. Ground based observations can serve to confirm space observations and vice-versa.

3.1. Towards mode identification

Once Av isknown either as described above (or with another method), it is possibleto built an echelle
diagram (Unno et a. 1989). Thisdiagram emphasizes the signature of the small separation predicted by the
asymptotic theory in function of the degree ! of the modes:

Vno+2 — Vpt1,0 ™~ 2(2f + 3)Dg(l/) (1)

where D, (v) is a quantity which depends on the derivative of the sound speed, and is particularly
sensitiveto the stellar core (Unno et al. 1989). Thiscan beused asafirst step towardsidentifying the detected
modes as ¢ place themselvesin different patterns. In the case where we are not in the asymptotic regime, we
know here that remains such trend at lower frequencies. Then this method can also be used where we are
not in the asymptotic regime using the mean value of the large separation corresponding to the considered
region.

From simulated ground-based data, it isdifficult to say something very precise because of thetoo small
number of modes (Fig. 5). Without modelsit is difficult to know if the pattern in the echelle diagram is due
tol=0or (=1

With the set of modes corresponding to modes with frequencies greater than 200 :Hz and with modes
with amplitude greater than 10~5, we saw in the last Section that we can determine amean value of thelarge
separation. This set of modes is now used to build an echelle diagram (Fig. 6) corresponding to the mean
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value of the large separation found (i.e. 40 xHz).
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Fig. 6.— Echelle diagram with k as an integer. Left: with Av = 40 pHz for modes between 200 and 409
1Hz and amplitudes greater than 10~°. Right: with Ar ==47 uHz for modes between 50 and 800 n:Hz.

The unstable modes we consider in this present case have frequencies in the range where everything is
mixed up in the echelle diagram of the “ideal case” (Fig. 6, Right). However selecting higher frequenciesin
the unstable domain and using the value of the large separation given by the histogram (Fig. 6, Left), we can
recover nice structures associated to (==0,1 and 2. We are not far from mode identification.

4. Conclusion and per spectives

We have built a frequency data set as can be expected from space data and have shown that it is till
possibleto recover patternsin the complicated simulated space data frequency spectrum and then to be not
far from modesidentification. Althoughdependent on the amplitude pattern chosen here, itisstill reasonable
to conclude that there exists a regime in frequency and amplitude which is not reacheable from the ground
and which remains simple enough to determine =0, 1, 2 modes. Once these modes are determined, the other
modes can be easily identified.

Thefrequency data does not include rotational splittings. The study of the effect of rotationisawork in
progress. Another next issuewill be extracting structure associated to high degree modes and mixed modes.
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Abstract. The identification of the low-degree p modes in other stars is the chal-
lenge of future asteroseismology space missions such as COROT, MONS, Most or
Eddington. The identification is based on a priori knowledge of the characteristics of
the modes. We shall review the most common assumptions needed for the identifi-
cation such as basic stellar structure, visibilities, rotational splittings or linewidths.
We shall describe a few tools needed for facilitating the identification. As soon as
modes are properly identified, the peakbagging of the mode characteristics can begin
using Maximum Likelihood Estimation. We give examples of the whole process using
solar data and hare-and-hound exercises performed in the frame work of the COROT
project.

Keywords: Sun, stars, seismology

1. Introduction

In the very near future, there shall be a fleet of space missions aiming
at understanding the internal structure of the stars: Most!, COROT?,
MONS? and Eddington?. All these missions will observe global oscilla-
tions of the stars by measuring tiny light fluctuations; they are due to
the perturbation of the star surface by the oscillations. The detection
and identification of these modes of oscillation is the challenge of all
these missions. This challenge is for most stars extremely difficult (e.g.
Cepheids) but easier for solar-like stars. For these latter, the Sun has
been and is a great aid and example.

Hereafter after having defined what is meant by solar-like stars,
I explain how the current identification can be based on that of the

! Microvariability and Oscillations of Stars, a Canadian mission to be launched
in April 2003 (Matthews et al., 2000)

2 COnvection and ROTation, a CNES mission to be launched in Nov 2005 (Baglin
and The COROT Team, 1998)

3 Measuring Oscillations in Nearby Stars, a Danish mission under study to be
launched in 2005 (Kjeldsen et al., 2000)

* A mission part of the ‘Cosmic Vision’ programme of ESA, to be launched in
2008 (Favata et al., 2000)

i“ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.
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Sun case. When the identification is achieved, peak bagging® can be
started; the theory of which is explained here. The practice of mode
identification and peak bagging is developed through the use of hare-
and-hound exercise. The results of such exercises carried out by the
COROT Data Reduction Group are presented here.

2. What is a solar-like star?

The definition of a solar-like star depends on whom you talk to. There
are basically 3 ‘definitions’ driven by:

1. the stellar structure: the solar-like star is similar to the Sun, i.e.
with an outer convection zone and a radiative zone. Stars with a
mass smaller than 1.2 M, satisfy the criterion as they do not have a
convective core yet (Iben and Ehrman, 1962; Cox and Giuli, 1968).

2. the excitation process of the oscillations: the process is similar to
that of the Sun, i.e. due to turbulent convection (Houdek et al.,
1999). It occurs in stars with mass smaller than 2 Mg with an
outer convection zone even if it is very shallow (Houdek et al.,
1999); the efficiency of the process is driven by the turbulent Mach
number M; (Houdek et al., 1999) that is maximum for 1.6 M.
Above roughly 1.5 M, the stars have overstable modes; they enter
the Cepheids instability strip (Houdek et al., 1999).

3. the structure of the oscillation spectrum: a regular spacing of the
modes must be observed as predicted by asymptotic frequencies
(Tassoul, 1980). The regular spacing provides the basis for a diag-
nostic tool: the echelle diagramme devised by Grec (1981) for the
Sun.

The latter definition is the most relevant. The reason for this choice
is the power of the echelle diagramme as a diagnostic tool. The structure
of the ridges in the echelle diagramme of a solar-like star looks like
those of the Sun. The experience gained in helioseismology will be a
considerable help in this respect, especially for mode identification.

% peak bagging is a term coined by Jesper Schou who is a keen moutain climber.

Such individuals use to record climbed peaks in a book and referred to it as the
peak bagging list. ..
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3. Past and present mode-identification methodology

3.1. IN THE EARLY AGE OF HELIOSEISMOLOGY

The first identification and identification of the solar oscillations as
global modes (low degree) is attributed to Claverie et al. (1979). They
identified the regular spacing based on the prediction made for low
degree, low order mode frequencies by Iben and Mahaffy (1976). They
had enough foresight for finding that the detected modes were higher
order modes of about n > 20. Unfortunately, they could not identify
the degree of the modes because the length of the time series did not
allow for separating the odd degrees (I = 1 — 3) from the even degree
(I = 0—2)5. Such an identification was performed by Grec et al. (1980)
using the echelle diagramme and the difference of the small frequency
separation. The length of the time series was such that they had to
collapse the power along the ridges in order to increase the signal-to-
noise ratio (Fossat et al., 1981). At this stage, such a technique allowed
to resolve the rotational splitting (Grec et al., 1983). The identification
of the order n was only made possible by identifying the f-mode ridge
in the (I,v) obtained by making images of the Sun (Deubner, 1975).

3.2. IN THE XXIST CENTURY AND BEYOND

From helioseismology, we can identify three steps in the mode identifi-
cation, all using the echelle diagramme:

1. determination of the large frequency separation (i.e. Avy)

2. degree identification and determination of the small frequency sep-
aration (i.e. dg2,d13)

3. rotational splitting and star inclination estimation

These steps are intimately linked to the length of the time series and the
signal-to-noise ratio. A typical large frequency separation for a solar-
like star ranges from 40 pHz to 170 pHz which is easily resolved by
observing a star over a few hours (Audard and Provost, 1994). The
small frequency separation is more difficult to retrieve as it ranges
typically from 3 to 13 pHz (Audard and Provost, 1994), and requires
a few days before resolving it. The visibility of the various degrees can
also be used for identifying the modes in the second step. For instance
the | = 3 modes are significantly damped by the integration over the

6 each pair presents a different small frequency separation of 10 yHz for | = 0 —2

and 13 yHz for [ =1—-3
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Figure 1. The power spectra of the Sun observed by Grec and Fossat (1977) (Black)
and of o Cen observed by Bouchy and Carrier (2002) (Grey). Thanks to modern
technology, they were put to the same scale showing that the stellar observations
of today match the solar observations of the 70’s. Both spectra show what can be
obtained for a few days of observation stellar radial velocities. The frequency at
which the modes are maximum depends upon the

stellar disk (Christensen-Dalsgaard and Gough, 1982 for velocity and
Toutain and Gouttebroze, 1993 for intensity); it renders the (I = 0—2)
ridge significantly different from that of the (I = 1—3) ridge in the solar
case. The rotational splitting is even more challenging: it does require a
few months of observation in the case of the Sun, as its rotation period
is of the order of a month.

The order identification requires more technological developments.
In the not too distant future space based interferometers may provide
the first low-resolution images of the stars. If it were possible to make
higher-resolution images of the stars, the f-mode identification would
certainly be achieved for stars; this is likely to a be dream for the XX1st
century and beyond.

At the time of writing, only two stars have been observed showing
unambiguously solar-like p modes: the Sun and « Cen. These two stars
are the test bed of the identification process described above. Figure 1
shows what can be obtained by observing the Sun (Grec and Fossat,
1977) and a Cen (Bouchy and Carrier, 2002) over a few days. The large
separation is easily identified for both stars. For « Cen, the echelle
diagramme does reveal the small separation in a more obvious manner
(Bouchy and Carrier, 2002). As for the splitting, the time series are still
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too short for a Cen for revealing the splitting. Careful attempts have
been made by (Bouchy and Carrier, 2002) for deriving the rotational
splitting of the modes of o Cen but more observing time is required. The
measurements of the rotational splitting for low-degree modes is rather
difficult. That is only in the mid-90’s, that reliable splittings could be
obtained for the Sun using the theory of power spectrum fitting. It is
likely that such measurements for the stellar case will require extreme
care before getting some confidence in the results, but as we show
hereafter the theory of power spectrum fitting is now well mastered.

4. Theory of peak bagging

Before we can proceed with the peak bagging, it is necessary to have
been able to properly identify the modes as described in the previous
section. This is a very important step allowing to tag each ridge in the
echelle diagramme with a degree [. Peak bagging means derivation of
the mode parameters through power spectrum fitting. The theory of
power spectrum fitting for the Sun as a star is now well developed. It
has been described in numerous articles and is now well understood;
it is based on the use of Maximum Likelihood Estimators (MLE) (See
Duvall and Harvey, 1986 and Appourchaux et al., 1998 for a review).
Here I briefly summarize the technique. The power spectrum is fitted
using MLE assuming:

— a statistics for the spectrum
— a model for the modes

The statistics of the spectrum for uninterrupted time series is a x?
with 2 degree of freedom (Gabriel, 1994). The model of the modes
includes the mode frequency, the mode linewidth, the mode amplitude,
the mode profile and the background noise. In some case, modes of
different degrees overlaps (I = 0 — 2, [ = 1 — 3), they are usually
fitted together. The simultaneous fitting these modes require to know
the visibility of the modes. For intensity this is given by Toutain and
Gouttebroze (1993) while for velocity this is given by Christensen-
Dalsgaard and Gough (1982). The rotational mode splitting and the
inclination of the star have to be taken into account. There are up to
2l + 1 components depending on the inclination of the star. The star
inclination is taken into account depending on the way the modes are
observed (velocity or intensity). The spherical harmonics eigenfunctions
has to be weighted by the projection onto the line of sight or by the
limb darkening. For intensity, the visibilities of the modes can simply
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be approximated using the decomposition given by quantum mechanics
rotation matrices (Toutain and Gouttebroze, 1993).

Error bars on the parameters are derived using the inverse of the
Hessian (or curvature matrix) (Appourchaux et al., 1998; Toutain and
Appourchaux, 1994). The error bars derived give a good estimate of
the true error bars (Appourchaux et al., 1998). The validity of such
error bars can be tested using the z test as described by Chaplin et al.
(1998); this is a test comparing internal and external error bars.

Finally, the significance of parameters (under the Hy hypothesis) can
be checked using the likelihood ratio test as described by Appourchaux
et al. (1998). This test is rather useful for assessing the adequacy of
the model fitted to the data.

5. Mode identification and peak bagging in practice:
hare-and-hound exercise

As coined by an anonymous scientist:'In theory there is no differ-
ence between theory and practice; in practice there is’. The theoretical
approach described above needs to be tested with real data. In the
history of helioseismology, the real data have been sometimes fabri-
cated in a such a way that it looked like a road runner chase. The
term hare and hound” appeared in the GONG® Newsletter #9 of 1988
when the GONG Inversion team performed simulated inversion on data
fabricated by a hare (Douglas Gough).

Within the COROT team, we found that it would be useful to
have such a hare-and-hound exercise that would simulate (as well as
stimulate) the mode identification and the peak bagging. The steps for
this exercise are the following:

— a Team A generates theoretical mode frequencies and synthetic
time series

— a Team B analyzes the time series, performs mode identification,
peak fitting and structure inversion

The two teams have no access to any other information but the time
series and the known characteristics of the star. Nothing else is allowed.

5.1. TEAM A: THE MAKING OF SYNTHETIC TIME SERIES

The steps for making the artificial time series are very similar to those
needed for using MLE. You need to assume:

" In French we would rather call it: le jeu du chat et de la souris
8 Global Oscillation Network Group
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Peak bagging for solar-like stars 7
— a statistics for the (Fourier) spectrum
— a model for the modes

The statistics of each component of the Fourier spectrum is assumed to
be normally distributed with a zero mean and an rms value described
by the model for the modes. For the model of the modes, the following
data are needed:

— the characteristics of the solar-like star
— the theoretical or asymptotic mode frequencies (& la Tassoul)

— the mode visibility (Christensen-Dalsgaard and Gough, 1982; Toutain
and Gouttebroze, 1993)

— the excitation profile and linewidth (Houdek et al., 1999; Samadi
and Goupil, 2001; Samadi et al., 2001)

— the rotational splitting and stellar inclination

— the background stellar noise derived from that of Trampedach et al.
(1998) or of the Sun as in Harvey (1993)

— any other parameter not mentioned above (asymmetry, trick, mind
twister or anything else to make it more real)

As soon as each Fourier component is properly modeled, an inverse
Fourier transform provides the necessary time series that will be passed
to the next team.

5.2. TEAM B: POWER SPECTRUM ANALYSIS

The power spectrum analysis can be done in various ways. Here I
recommend to perform the steps as described in Section 3 and 4, i.e.
to make an echelle diagramme of the power spectrum, perform mode
identification and then to fit the modes according to a model. When
the p-mode parameters are obtained the last task of this team is to
invert the mode frequencies in order to derive the stellar structure. This
is beyond the scope of this talk but this is discussed by Berthomieu
in these proceedings in the frame work of the COROT HH exercise
described hereafter.

5.3. THE COROT HH EXERCISES

The Asteroseismology and Exoplanet-search mission of the French space
agency (CNES) is going to be launched at the end of 2005. There
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are several scientific groups being involved in the preparation of the
mission. The Seismology Working Group (SWG) prepares the data
analysis and scientific interpretation of the seismology data. The Data
reduction group of the SWG is more precisely in charge of the data
analysis aspects. This group has set up three different hare-and-hound
exercises”:

— HH#1 Validation of power spectrum fitting technique (no inver-
sion, asymptotic frequencies)

— HH#2 Recovery of the initial stellar model for synthetic stars (full
cycle as described above)

— HH#3 Choice of targets

The first exercise is over and lead to the validation of power spectrum
fitting performed by different groups (Institut d’Astrophysique Spa-
tiale, Orsay: Boumier; Observatoire de Nice: Toutain; European Space
Agency: Appourchaux. The last exercise is on going. The second HH
exercise is also over and I report on the results obtained.

5.3.1. The teams
There were three teams involved in the process:

— Meudon: Observatoire de Meudon (stellar model and inversion) +
Appourchaux (time series and power spectrum fitting)

— Nice: Observatoire de Nice (stellar model and inversion) + Toutain
(time series and power spectrum fitting)

—  Queen Mary: Queen Mary stellar (model and inversion) + Barban
(time series and power spectrum fitting)

Each team produced synthetic time series and passed it on to the 2
other groups for power spectrum fitting and structure inversion.

5.3.2. A piece-of-cake case: Nice synthetic data

Figure 2 shows the echelle diagramme obtained for the Nice synthetic
data. The time series are 150-day long and sampled at 60 sec. The
frequencies fitted are obtained within about 0.1 to 0.2 pyHz of the
theoretical frequencies. SImilar results were obtained with an other
piece-of-cake time series that of the Meudon team. The frequency com-
parisons and inversion associated with this time series are presented
elsewhere in these proceedings by Berthomieu et al.

9 The activity related to these HH exercise can be found in
http://virgo.so.estec.esa.nl/html/corot/datagroup/hh.html
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Figure 2. Echelle diagram of the Nice time series. The large separation is about 58
pHz. The ridge at the left hand side is due to the [ = 1 modes. The identification is
rather easy because the ridge at the right hand side show a more complex structure
related to the splitting of the I = 2 modes interfering with the [ = 0 mode ridge.
The order labeling the y axis have no absolute meaning.

Barban—Roxburgh data
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Figure 3. Echelle diagramme of the Queen-Mary time series. The bright ridge at
+12 pHz is identified as due to the [ = 0 modes; it is the only one ridge with this
shape. The 3 parallel ridges at -23pHz, -13puHz and -3p¢Hz are attributed to the
m = —1, m = 0 and m = +1 modes of [ = 1; the splitting is about 10puHz. The
ridges left over (5 of them) were attributed to the | = 2 modes; the m = 0 mode

ridge crosses the [ = 0 mode ridge. The m = —2 and m = —1 mode ridges seemed to
be on either side of the [ = 1, m = +1 mode ridge, while the m = +1 and m = +2
mode ridge are on either side of the [ = 1,m = —1 ridge.
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Figure 4. Comparison between the parameters fitted by the Meudon team with the
theoretical parameters of the Queen Mary team; (left) for the I = 1 mode frequencies,
(right) for the [ = 1 mode splitting. The agreement between the input and the fit is
excellent for I = 1; a similar agreement was obtained for [ = 0.

2 ~ 12
Rl j 10F :
3 of £ sf ;
~
F-rp 2 6f 1
=Y —2F 3/ 4F 3
I I
373 2 '
—4F g oF . . ]
0.5 1.0 1.5 2.0 5 0.5 1.0 1.5 2.0
Vi (MHZ) ~ Vo (MH2z)

Figure 5. Comparison between the parameters fitted by the Meudon team with the
theoretical parameters of the Queen Mary team; (left) for the | = 2 mode frequencies,
(right) for the [ = 2, m = 1 mode splitting. The agreement between the input and
the fit is extremely poor. The misidentification of the I = 2 is obvious; the ridge
identified as an [ = 2, m = 0 was as a matter of fact a l = 3,m = —2.

5.3.3. A difficult case: Queen Mary synthetic data

Figure 3 shows the echelle diagramme for the Queen Mary synthetic
data. The identification as explained in the caption is somewhat more
difficult, to say the least. The main problem is that it seemed that
the mode visibility was not according to what is usually expected, in
addition the large ‘apparent’ rotational splitting confused even more
the data fitters. The [ = 0 and [ = 1 modes were identified with some
confidence. De facto we did not assume a common amplitude for the
I = 2 modes constrained by the visibility of the multiplet as given by
Toutain and Gouttebroze (1993). Instead we assumed that the [ = 2
multiplet had 5 different amplitudes not constrained by geometrical
visibility. This was as matter of fact a correct assumption verified a
posteriori, but not sufficiently correct as it turned out that the [ = 3
mode ridge was improperly labeled as being [ = 2.
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Figures 4 and 5 shows the results obtained when comparing the
output fitted parameters with those of the input theoretical parameters.
The results obtained for Figure 4 are typical of what we obtained for
other time series (See Berthomieu et al in these proceedings), or for
the [ = 0 of the Queen-Mary time series. Figure 5 is an example of
what happens when modes are misidentified. This exemplifies again
the usefulness of the echelle diagramme as a diagnostic tool.

6. Conclusion

I have shown that mode identification and power spectrum fitting for
solar-like stars benefit from 20 years of helioseismic experience. The
methodology explained here can be easily applied when the signal-to-
noise ratio is rather high. When this is not the case other techniques
have to be used that are beyond the scope of this review. Hands-
on experience for solar-like stars awaits the avaibility of space-based
measurements (COROT, MOST). Within the Corot team, the waiting
has been replaced by the use of hare-and-hound exercises. Examples of
the results obtained within the COROT team show what can happen
when one encounters the expected and the unexpected. This is the
latter that is most interesting.
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Hare & Hound exercise with simulated COROT data
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Abstract. With the aim of preparing the interpretation of future COROT observa-
tions, a Hare-and-Hound exercise has been performed on a solar-like oscillating star.
The methods used to construct simulated time series and to recover the properties
of the star using the frequencies extracted from these time series are described and
the comparison between the results and the theoretical inputs are presented.

1. Construction of simulated time series

Two hare-and-hound exercises (H&H) have been performed, by the
teams of the COROT sismogroup. The different steps of the H&H
exercise are the following:

e Construct a stellar model M (mass), Y (helium), Z/X (metallic-
ity), Co» (overshoot) with constraints! on luminosity (L/Lg), effective
temperature (7,7s) and metallicity (Fe/H). Compute the frequencies
of the models v, y. Construct a simulated time series which represents
what the observation of the pulsating model by COROT would give.

e Extract the frequencies: hereafter referenced as “observed frequen-
cies” 7, ¢ and rotational splittings (not yet exploited).

e Interpret them in terms of internal structure and rotation of the
star. Hereafter results concern the direct approach that is the search for
the closest model to the “observations”. No inversions are presented.

Two input models (respectively Ex1 and Ex2), satisfying the con-
straints, have been constructed by the Nice and Meudon groups using
the CESAM code; their frequencies computed and provided to the
teams in charge of constructing the time series (referenced hereafter
by Appourchaux, Toutain, [AS). Simulated time series are constructed
assuming amplitudes and damping rates according to Houdek et al.
(1999 A&A, 351, 582), stellar noise according to solar noise (or even
flat) + COROT noise and a given inclination of the stellar rotation
axis.

Y 7. Appourchaus, C. Barban, F. Baudin, G. Berthomieu, M. Bossi, P. Boumier, M.J. Goupil, Y.

Lebreton, P. Morel, B.L. Popielski, J. Provost, T. Toutain, I. Roxburgh

1 The constraints on the models are: 0.86 < log(L/LQ) < 0.89 ; 3.8062 < log(Teff) <
3.8195 ; 0.019 < Z/X < 0.03

é“ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.
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Figure 1. The echelle diagram for Ex1
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Figure 2. a)Difference between extracted frequencies and theoretical input frequen-
cies for Ex2 (¢ = 0 in black,{ = 2 in blue) relatively to the frequency.b) Difference
between extracted frequencies by three independent groups and theoretical input
frequencies for Ex2, £ = 0 relatively to the frequency.

The identification of the modes ( degree [ and azimuthal order m) is
made with the help of the echelle diagram. The degrees are identified
according to the splitting structure of the (I = 0,1 = 2) pair versus that
of the ({ = 1,1 = 3) pair.

The determination of the mode parameters (here principally fre-
quencies) is made using Maximum likelihood estimators. The model
used for fitting assumes a Lorentzian profile of the mode, a degree-
dependent visibility, a rotational splitting, a star inclination and a flat
background noise. The statistics of the power spectra is a x? with 2
d.of. The modes are fitted by pairs over a 40-p Hz (or so) window.
Figure 2 give the differences between the extracted frequencies and
theoretical input frequencies.

2. Interpretation of the ”Observed frequencies”

In Ex2, according to Berthomieu et al 2002, Provost et al. 2001, the
aim is to select the models which fit the “observed” large spacing
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Figure 3. Small frequency spacings droz and g for different models satisfying
“observed” large spacing, “observations” (full dots) and input model (open circle)

with M, (heavy line), M (dashed line).
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Figure 4. Reduced echelle diagram for degree ! = 0 for a model (solid curve) and
observations (dashed).

Ap¢ = Vpp — Vp—1 and the small “observed” spacings defined by:
Svo2 = Vny=0 — Vn-1,=2 ; V01 = 2Vn =0 — (Vne=1 + Vn—1,=1). Small
spacings are sensitive to the core overshoot parameters, with a highest
sensitivity at high frequency.

Among all the models which fit the large spacing, the fit with “ob-
served small frequency spacings” in large frequency range favours mod-
els with low core overshoot M1 (considered as first choice: outputl in
table 1), while the fit in the low frequency range where the error bars
are smaller favour models M2 (output2 in table 1).

In Ex1, the frequencies for [ = 0 are developped according to: v, g =
vOu+k < Do > —I—I/Sffwf7 where < Dy > is a mean large spacing, ﬁgffset
is a third order polynomial fit of “observed” ngfset The reduced echelle
diagram ( figure 4) is defined by the difference v, , — ¥, .. Four
extreme points are choosen to characterize the spectrum. These points
and the mean large spacing are used to constrain the five parameters
involved in the model computations (see Popielski et al 2001). Several
models can fit well the constraints. The “best fit” model is choosen as
that which reproduces the most of frequencies.
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Table I. Comparison between “input” and “output” models for the two exercises.

Ex1  Input Output Ex2  Input Outputl  Output?2

Nice Meudon Meudon  Nice M1 Nice M2

M/Mg 1.54 1.52 1.48 1.50 1.50
X 0.712 0.722 0.715 0.70 0.715
Z/X 0.025 0.024 0.0210 0.0214 0.0210
Cow 0.0 0.04 0.15 0.05 0.15
log(L/Lg) 0.840 0.828 0.86 0.88 0.870
log(Tesy) 3.817 3.814 3.809 3.81 3.811
Age (My) 1699 1908 2200 1810 2050
X 0.159 0.190 0.17 0.09 0.19
Feore [ R 5.82107% 6.12 1072 591072 52107 6.2107°
rzc /Ry 0.915 0.922 0.917 0.926

3. Conclusion

The data analysis of the simulated time series has produced ”observed
frequencies” in good agreement with the input theoretical frequencies
except in low and moderate frequency range. The errors are of the
order of 0.1 to 0.5uHz except in the large frequency domain. Using
these “observed” frequencies we are able to find models close to the
input models but the solution is not unique. In Ex2, the results stress
the importance of the small spacing dvpy, very sensitive to the core
overshooting, for discriminating the models. However the “observed
dvp1” have large errors in the high frequency domain. This may alter the
choice of best fit. In Ex1, despite the use of different stellar evolution
codes and oscillation codes the input and output models are rather
close. For future works, we need to improve the criteria of model selec-
tion and to study the sensitivity of the models to stellar parameters, to
numerical codes and to the physics. The next step will be to perform
the inverse problem with the best models as reference model.
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Results on the HH exercise: how did I fit the

1

data?

T.Appourchaux
September 14, 2001

Goal

The goal of this document is to report on what one of the data fitter of the team
B (Meudon-Appourchaux-Nice and consort) have done.

2 The approach

There are few simple steps that are used to reduce the data such as:

timeseries plot

histogram of the time series (gap detection)

interpolation of the gaps (if possible)

compute the fft of the timeseries

echelle diagramme of the power spectra (looking for a credible Av)
identifying degrees in the echelle diagramme

run a statistical test to check for peaks to be fitted

fit the power spectra

For this latter step, we usually assume the following:

the mode of a multiplet are excited with the same amplitude modulated
by the visibility for each (I, m)

the visibility for each (I, m) is a function of the angle of inclination of the
star onto the line of sight (i ?)

the visibilities are computed neglecting the limb darkening



o the mode splitting for a multiplet is fitted using a; using Clebsh-Gordan
coefficients (see associated report), the maximum ¢ depends on the number
of multiplet in a mode (241 components)

o the statistics of the spectra is assumed to be a x? with 2 d.o.f
e spectra are fitted using Maximum Likelihood Estimators

e other details depend on the spectrum analysed

3 Results

3.1 Nice-Toutain spectrum

The timeseries seems to have no peculiar problem. Figure 1 shows the power
spectrum. The modes are clearly visible from 250 pgHz to 1800 uHz. Figure 2
shows the echelle diagramme with a spacing adjusted by hand of 57 pHz. The
ridges are easily identified and we can proceed to fitting the data.

The { = 0 and [ = 2 modes are fitted in pair assuming a common linewidth,
2 different amplitudes (one for [ = 0, a common one for the [ = 2 multiplet), an
angle of star inclination, a common flat noise and a single splitting a;.

The ! = 1 and [ = 3 are fitted in the same manner, except that a test for
the presence of [ = 3 check whether the spectrum should be fitted for a pair
l = 1—3 or simply just for [ = 1. Although, most of the time the test did not
detect the presence of the [ = 3, it happens that the [ = 3 could be seen by
eye, at least one component of the multiplet. Unfortunately, this may not be
enough to properly derive the characteristics of the { = 3 modes.

Given the fact, that the [ = 1 gave a rather consistent splitting, the l = 0—2
was fitted again by giving as a starting parameter a value close to that of { =1,
but free nevertheless. Likely the same approach may be used to refit [ = 3.

3.2 Roxburgh-Barban spectrum

Figure 3 shows a subsection of the timeseries and its associated histtogram.
Some zeros put at regular places (and a large one somewhere else) give ob-
viously problems. Figure 4 shows the effect of the 20-min periodic gap as a
833-uHz modulation. After finding the gaps, those are corrected by simply in-
terpolating with data before and after the gap. Figure 5 shows the same chunk
of the timeseries after the correction. Figure 6 shows the power spectrum after
correction. The modulation has dropped by more than a factor 100. A small
peak appear at around 164.12 pHz, still pondering about whether it is an arti-
fact or a g mode.. . Finally Figure 7 shows the echelle diagramme with a spacing
of 52 puHz. This echelle diagramme is not easy to read at all. It required lots of
thinking before we could do somthing about it. Finally, we come to a solution
where the brightest ridge is due to the I = 0, and the other ridge are due to
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Figure 1: Power spectrum as a function of frequency

!l =2and ! =1 split by 10 uHz, giving in total 14+345=9 ridges. The trouble
is that some ridges appear to be fainter for m=-2 than for m = 4+2. For regular
stars, this is unlikely but given the fact that the star rotates about 25 times
faster than the Sun, we can expect other peculiarities. In addition, it seemed
that the ridges of a given ! were not equally spaced, which is not unlikely be-
cause the star is squashed and the spherically symmetric structure of the star
does not exist anymore. But if it were the only problem that woudl have been
simple. Unfortunately, the ridges for [ = 2, m = 42 alias into the ridge for
l=1,m = —1, and vice-versa. The solution I chose for fitting the data was the
following:

o fit spectrum over 70 pHz or so
e assume a common linewidth for all degree

e fit simultaneously I = 0,1, 2

2500
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Nice—Toutaln spectrum
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Figure 2: Echelle diagramme with a spacing of 57 pHz. Given the structure
of the ridges, we assumed that the left-hand side ridge is due to the { = 1 and
! = 3 modes, and the right-hand side ridge to the [ = 0 and [ = 2 modes.

fit with a fixed frequency the two spurious peak (alias of { =2, m = 2 and
aliasof I=1,m—1

e assume a splitting of 10 uyHz
e fit [=1 and [=2 with a; coefficient up to 1=2, i=4 respectively
e and a flat noise

The fit works properly and return good results, whether they reflect what was
out inside is an other story (comme dirait Kipling...).

Please forgive me for misspelling, lack of accuracy and details. .., time is
running out. ..
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Figure 4: Power spectra of the raw data. The 833-pHz modulation due to the
gap is easily visible, so are the modes.
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Figure 6: Power spectra of the corrected data. The 833-pHz modulation due to

the gap reduced by a factor 100.
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Figure 7: Echelle diagramme with a spacing of 52 pHz. Given the structure
of the ridges, we assumed that the strongest ridge is the I = 0 modes. We
assumed that the splitting was 10 gHz. The tiny ridge crossing the [ = 0 mode
was believed to be due to the [ = 2, m = 0 modes; the ridge corresponding to
l=2,m =1 1is at the rightest while the [ = 2, m = 2 wraps around and appear
at the left hand side; the I = 2, m = —1 is close to the zero frequency while the
l =2, m = —2 appears to be the faintest of all; the I = 1, m = 0 ridge is roughly
at -15 pHz while the [ = 1,|m| = 1 ridges are on either side.



Hare-hound exercise: Report on preliminary work on the interpretation of
frequencies extracted from simulated time series

Provost J., Berthomieu G., Morel P.

We have considered the set of frequencies extracted by T. Toutain from the simulated
time series “Meudon-Appourchaux”, hereafter refered as “observed” frequencies. The de-
grees are given but the radial order have not been identified. This can be done in principle
by comparison with the frequencies of a stellar model close to the star. Our first step is to
select such a model among the set of models in the HR diagram box.

I. Large and Small differences analysis
As a first step, we have used the asymptotic properties of the acoustic frequencies and
considered the large and small differences defined by:
Avy=Ung— Vn-14 (1)
57/02 = Vn4=0 — Vn-14=2 (2)

The large differences are plotted relatively to the frequency for degrees [ = 0,1,2 in
the upper pannel of the first figure, drgs is plotted in the lower pannel.
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It is seen that the large spacing is not constant. A very crude mean value of large
frequencies Ary can be defined with some uncertainty: Avy ~ 52. + 0.5uHz. We compute
a set of stellar models which satisfy the constraints on luminosity L, effective temperature
Tess and chemical composition Z/X defined by the hare hound exercise

0.83 < log(L/Lsun) < 0.89; 3.8062 < log(T.s) < 3.8195; 0.019 < Z/X < 0.03

Then we select among these models those which frequencies have a large spacing within
the “observed” domain. This corresponds to selecting models with given mean density.
The same is done for the small spacing. We estimate: dvgy ~ 3.92 4 0.15uHz.

For comparison, the large and small differences for a theoretical model M/Mg =

1.45, Z =10.015, ¢ = 0.3 is given in Figure 2.
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Mean values of Large and Small frequency differences

for a set of models

A set of models has been computed with different values of the core overshoot pa-
rameter (, the mass M /Mg and the heavy element abundances Z. The figure represents
the mean values of the small difference drgs relatively to the mean large difference Awg for
these models with the following characteristics:

(=0. (M/Mg, Z): (1.5, 0.015), (1.59, 0.02) (full triangle)

(= 0.1
(=02
(= 0.3

: (1.45-1.47, 0.015), (1.53, 0.0175), (1.54, 0.02) (full circle)
: (1.45-1.47, 0.015), (1.525, 0.02) (full star)

: (1.45-1.47, 0.015), (1.47, 0.0175) (open star)
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The cross in the figure represents the domain in dvg2 and Avg estimated from the

“observed” frequencies.



Small frequency differences 6191 for TT-TA-Meudon and models

0v01 = 2Un =0 — (Vn¢=1 + Vn—1,¢=1)
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The full line corresponds to a model with M /Mg = 1.5, Z = 0.015, (¢ = 0.05, the
dashed line corresponds to the model of figure 2.
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In conclusion:
On the basis of the considered criteria, the models with low core overshoot parameter

better fit the “observed” data.
This analysis allows to select some models to carry on some inversions.
Others global characteristics of the frequencies are needed to infer properties of the un-

known model.



First results of asteroseismic exercise from
Meudon

Btlazej L. Popielski, Marie-Jo Goupil

Abstract

We present an application of the classic seismological forward problem
in the context of solar-like oscillations. The range and quality of input
frequency data are similar to those anticipated for observations from fu-
ture space missions. The project is part of hare and hound exercise of
the COROT SWG!. We focus on the possibility of reproducing p-mode
spectra. However, we emphasize also the importance of mixed modes for
sounding the deep interior.

1 Introduction

There is a strong need to reproduce the pulsational behavior of distant stars
after the success of helioseismology. High quality spectra are being obtained as a
result of months of dedicated satellite observations (Baglin, 1998). Investigating
the solar-like oscillations is the first step for asteroseismology. While the number
of detected frequencies is expected to be significantly lower than for the sun,
blind experiments (hare and hound exercise) between independent groups have
been undertaken. This work is the result of one of the groups working with two
sets of frequencies.

In Section 2, we present the rules of the exercise concerning building a model
and its oscillation frequencies. Next, we concentrate on accompanying the reader
through the whole data analysis process. In Section 3 we focus on a simulated
spectrum to reduce the number of important parameters. We describe then our
forward method and present the resulting models which are believed to represent
best the investigated observed frequency data (Section 4.).

2 Exercise rules

A set of artificial “observed” noise-free frequencies gives us opportunity to check
our ability to find a solar-type model reproducing frequencies. The rules are
based on what realistic conditions we hope to obtain for each target star of
specific mission (see Provost, 2001). The assumptions of the hare and hound
exercise concerning model (called observations starting from this point) refer to

!Latest news available at http://dasgall.obspm.fr/ michel/ COROT-SISMO.html.



ranges in metal abundance (Z/X) and HR-diagram parameters (Tess, L/Lg).
The ranges are as follows:

Z/X €[0.019,0.03],
logT.s; € [3.806,3.82],
log L/ L € [0.83,0.89).

The frequency set includes low degree (¢ < 3) modes, and contain rota-
tionally split components (m # 0). There are 5 modeling parameters in game:
mass, M, hydrogen abundance, X, metal abundance, Z, mixing length param-
eter, a, and overshoot parameter, d,,. The mean spectral accuracy predicted
for COROT mission is ~ 0.1 pHz, however it may vary from one mode to
other (Baglin, 1998). We try to reproduce the spectra with predicted frequency
accuracy.

In this work, we deal with two sets of artificial data.

3 Spectral analysis

3.1 Echelle diagram

One-to-one frequency separation histogram (Figure 1.) reveals main regular
spacings in the spectrum. The main sinusoidal shape (with period of ~ 50 uHz)
is due to the mean separation of two consecutive multiplets of equal spherical
degree, £. We find frequencies of £ = 0,1,2,3 modes on a spectral distance of
this size. This distance is approximately equal to the mean large separation?,
(D) = % Zn,z Dy, where Dy,y = vpeo — Vn—100- It is basis of so-called echelle
diagram (Grec, 1981). Echelle diagram is result of cutting the spectrum into
such pieces and arranging them one above another. The frequency, v, and the
echelle-diagram coordinates, vof fset and ey, are related by following formulas,

Voffset =V — Vcut,
Veut = V?ut +k<D>v
where two constants, (D) and v2,,,
While (D) is the signature of the mean density (thus the age), v
physical meaning. It is fixed a priori for visualization purposes.
However, there are also fine structure peaks in the frequency separation his-
togram. They are due to the rotational splitting of the modes. The frequencies
of m = 0 modes, i.e. centroids, may be distinguished in Figure 2. In order to
focus on those frequencies we have to reduce equidistant frequencies of same
radial order for all spherical degrees (Figure 3.). Figure 3. is an echelle diagram
of observations and a model, as well. Each of the two sets consists of 4 branches
of adiabatic frequencies of different spherical degree. The branches are similar
curves. Model frequencies are present in adiabatic and non-adiabatic versions.

need to be specified and k is an integer.

0
oyt 1As 1o

2Several groups use geometric mean instead of the arithmetic one. We quote here the one
we used.
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Figure 1: Frequency separation histograms for setl. Two curves relate to
two separation sets, one-to-one separations (blue) and separations between two
consecutive frequencies (green). The last-mentioned reveals two main peaks:
one for rotational splitting (~ 2.1 pHz) almost uniform for all modes and the
multiplet frequency separation (~ 18.3 uHz).
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Figure 2: Echelle diagram for observed frequencies (set1). Most of horizontal
frequency counts give 16. It is the sum of four multiplets of low spherical degree.
Equidistant frequencies let us find appropriate £. Lower part of the diagram is
dominated by the mixed-modes. Their interpretation is much harder, while the
don’t obey asymptotic relations. Originate could be easily rescaled to fit radial
degree.
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Figure 3: Same as in Figure 3. stripped of the rotational splitting. Observa-
tional frequencies are shown (black x), as well as adiabatic and non-adiabatic
frequencies of a model (green dots and crosses, respectively). Observed radial
mode branch is bold.



In the high frequency domain non-adiabatic corrections perturb the model spec-
tra in an important way. We expect to reproduce real observational data, once
available. However, there are certain important spectral signatures in this fre-
quency region reveals. For this reason, we focus on [400, 1400] pHz frequency
domain. Lower frequency limit omits g-mode domain, where the asymptotic be-
havior is hard to encounter. On the other hand the acoustical cutoff frequency
gives the upper limit (~ 1500 pHz). We keep in mind however that some of
high frequencies from that domain may be also polluted.

3.2 Spectral parameters

The mean large frequency separation ,(D), is the crucial spectral parameter. It
is sensitive to the mean stellar density However, it is one of many (see Figure
3.). It is a convenient diagnostic parameter, but in this work, we use mean offset

frequency (echelle abscissa) for centroids of radial modes, <1/2f fset>, where

Vno = Vgut +k <D0> + ngfset(VTLO)'

This quantity is more practical for the purpose of frequency reproduction,
while the mean large separation corresponds to its derivative and in fact some
of frequency information is lost.

In this work we define and make use of 9 spectral parameters in total:

0

. <1/2f fset>, mean offset frequency for radial mode branch at fixed v,

o (v1,Avy), (v2, Av), (v3, Avs), (va, Avy), extreme points of reduced echelle
diagram for ¢ = 0 branch, see Figure 4.

The echelle diagram reduction, we use, is done by subtracting low, i.e. 3rd,
order polynomial fitted to the observations, T/Effset (v), from the standard echelle
data, v3; .., (v),

Angfset = ngfset(y) - Dgffset(y)-

This procedure brings to light small changes in the echelle diagram. These
are subtle but the most significant changes and still surpass the error magnitude.
We emphasize that you need to reproduce the 9 spectral parameters with an
appropriate model.

4 Model search

The mean large separation diminishes with age of a star on the main sequence.

The change of the mean offset frequency at constant 2, is quite more compli-

cated. However it is only the matter of modeling ability, to reproduce <1/2f ¥ set>
with certain accuracy for a model of chosen ZAMS parameters. The impact
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Figure 4: Reduced echelle diagram (see text) for a model (solid) and observa-

tions (dashed). The four extreme points serve their coordinates to characterize
spectra.



of 5 such parameters on a model constructed in this manner is shown in Fig-
ure 5. Although large separation is used, 5 model parameters may be divided
into those shifting spectral features (bumps) to higher (M /Mg, doy) and lower
frequencies (X, Z, a). This behavior of each of the parameters change when
models quit MS.

Note that we expect to find appropriate model on the cooling part of the
track, because the ratio of the lifetime on the heating to that on the cooling
part is about 0.5.

If we consider series of n models representing vicinity of a departure model,
we result in series of spectral characteristics:

{I/{l),1/51),I/?()l),I/Zgl),AI/{D,AVS),AVS),AI/ZED}

)

{I/En) , I/én) , V?En) , I/in) , Al/in) , Auén), AV?E”) , Allin) }.

If the range of those parameters encompasses corresponding observational
values, {V{O),I/SO),Véo),yio),Ayfo),Ayéo),Auéa),Al/io)}, we interpolate to find
out model parameters. We are able to approach the observations using this
method repeated in an iterative way. This method is quite demanding from
numerical point of view. It is however clear that quality of interpolation reduces
number of necessary iterations.

We carried all stellar modeling with Warsaw evolutionary code with high
quality equation of state (Rogers, Swenson & Iglesias, 1996) and opacity tables
(Rogers & Iglesias, 1996). Grain and molecular opacities were adopted as well
as conductive ones. The burning rates were based on Bahcall (1995).

In our search we used 5 parameter interpolation. Thus, we had to choose
5 spectral parameters to solve the set of 5 equations, in order to reproduce
the observed ones. We find it useful to deal with vy, vs, v, (Avy — Avy) and
(Avs — Avy). The effect of 3rd order in each modeling parameter was taken into
account. We benefited the Mathematica(TM) 3.0 calculating engine to provide
interpolation and the solution as well.

It should be stressed that this method is constraint independent. There is
uniqgely the shape of the radial mode (¢ = 0) branch of echelle diagram which
is reproduced. It is obvious however that the resulting models (or their lack)
depend on the departure model. It is recommended to start iterations from
several departure models.

4.1 Model choice criteria

Once several iterative searches are done we may obtain several models that fit
well. We have to choose one model spectra that fits best. We consider this is
the one reproducing the most of frequencies. To be precise, for each frequency

of a model we calculate its distance to the closest observed one, |vmdel — yobs|.
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drawn (black line).
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Figure 6: Histograms of differences between two spectra. 3 model spectra are
compared with the observed one. A-and A are following evolutionary models

spectra. A model is the one with correct <I/2ffset> and also the one shown in
Figure 3. B is a 1.5 Mg model.

Histogram of such distances N (kdv, (k+1)év), for k > 0 and év < v°%*, contains
an unbiased and frequency-free information on the spectral fit. Next, we fit

f(Av) = a; exp(—a2Av)

function to the histogram. Figure 6. presents 3 histograms data for models.
Comparison of well-fitted spectra is in that way reduced to comparing a; and
az values for different models. While the number of compared frequencies is the
same, it is ajor as, that let us choose: the greater — the better fit.

The table below together with the Figure 6. let us distinguish the difference

between “x? minimum” and “histogram” criteria.

[model | x* | a1 | a2 |
A- 8.160 | 50.7 | 1.02
A 8.525 | 100 | 81.94
B 2.709 | 44.6 | 0.96
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|m0de1||M/M®| X | Z | « |dm, || a; |

C 1.52 0.722 | 0.0175 | 1.7 | 0.04 || 10.17
D 1.525 0.71 | 0.019 | 1.67 | 0.02 || 8.78
E 1.363 | 0.703 | 0.0122 | 1.728 | 0.2 6.93

[ model [ t [10°yr] | X. [logL/Lo [logT.ss | ro/R |

C 1.908 0.172 0.828 3.8142 | 0.058
D 1.770 0.170 0.830 3.8148 | 0.058
E 2.333 0.246 0.823 3.8216 | 0.062

Table 1: Model parameters from spectral fit to set1.

4.2 Search results

The goal was to find parameters of a model reproducing observed frequencies.
As mentioned earlier, for our analysis we used two sets of artificial observations.
The first one (set1) is an intergroup data. Its true parameters are unknown for
us. The second one (set2) is an auxiliary one. It was generated by one of us
and analysed by the other one. Its parameters were kept hidden until the end of
analysis. In Table 1. we quote three models being results of three independent
iterations for set1. There is visibly no perfect model found. For those 3 models,
parameters span widely. However using our a;-criteria we can choose the best
(C).

The setl data was provided with frequency errors. Thus, we are allowed
to compare the errors with spectral differences for models C, D, E and set1
(Figure 7.).

Tabularized models lay outside the HR box of the hare and hound exercise.
It could be the effect of modeling physics (equation of state, burning rates etc.)
but certain general ease of reproducing radial branch could be the cause, as well.
We incline to the second scenario, thus we suggest the need of reproducing also
other quantities, apart from those of radial mode branch. Small separations and
fn = vn1 — vno separations should do. In Figure 8. we present large, small and
fn separations for setl and a model.

There is however another set of constraints for the models. This is the set
of frequencies of mixed-modes. In case of set2 we had an opportunity to verify
its applicability, while two mixed-modes are present in the set. They are modes
captured during their avoided crossing event. They propagate in the envelope
and in the convective core as well, thus their frequencies are important to be
reproduced, as far as deep interior is concerned. Frequencies of those modes
rise with age because of rising Brunt-Viiséla frequency at the edge of shrinking
hydrogen core.

In our analysis those additional observables were simply frequencies of two
mixed-modes. They were incorporated among 5 parameters of the interpolation
procedure, described in Section 4. The iteration was carried as described earlier,
except several steps that were enriched in the “mixed” parameters. Result of

11
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| model [ t[10%r]| X. [logL/Lg | logTess | rc/R |
"t 1.893 0.179 0.8280 3.8150 | 0.0583
Closanr | 2.000 | 0.140 | 0.8182 | 3.8118 | 0.0564

Table 2: Evolutionary parameters of two models with close p-mode spectra,
according to different codes.

the search (model F), reproduced well both p-mode and mixed-mode spectra.
Some of its parameters coincide with true parameters kept secret so far. The
mass and chemical composition are found to fit.

4.3 Uncertainties

There is also the comparison between two independent evolutionary and pulsa-
tional codes among advantages of the hare and hound ezxercise. Equipped with
such tools, we are able to evaluate some intrinsic uncertainties in model pa-
rameters coming from different modeling algorithms. In our simple analysis we
focused on one nonrotating model with imposed ZAMS parameters (same as for
model C). Oscillation frequencies of the model coming from codel (Clggans)
were then reproduced using code2. Two models (Cl pgan, C') which p-mode
spectra match (Figure 9.) were then compared. Table 2. quotes some evolu-
tionary quantities for the models. We see that the acoustic spectra coincidence
is hardly affected by the strong difference in the structure of deep interior. This
difference is probably due to the adopted burning rates. The HR diagram un-
certainty is illustrated in Figure 10. Similar shift between the models concerned
can be reproduced by changing the imposed envelope depth for the evolutionary
calculations. We claim, this might be one of important modeling parameters
that should be fine-tuned to reduce modeling uncertainty. We found that opac-
ity or equation of state errors, due to interpolation grid, are not so significant.

5 Conclusion

We are able to reproduce most of spectral features from both setl and set2
using two completely different evolutionary and oscillatory codes. Our forward
method of searching models that fit radial mode frequencies works well in the
framework of hare and hound. It is obvious that our models still need to be
constrained for £ = 1,2 p-modes. We claim, however, that incorporating few
mixed-mode frequencies in the analysis is a useful extension, while their fre-
quencies are very sensitive to age changes. Thus, we emphasize the advantages
of choosing evolved solar-like star among targets of an asteroseismology mission.

We stress also the necessity of fine-tuning of the evolutionary parameters (for
example, envelope depth). Revision of burning rates adopted is also advised in
order to minimize evolutionary uncertainties. Those are sources of additional
errors in any method of reproducing spectra.

14
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Sept, 11, 2001,

Simulation of COROT time series

Hare and Hound Exercise

C. BARBAN, NSO/DASGAL

1 Simulated Stellar signal Power Spectrum

I assume that the peak associated to an oscillation mode in the power spectrum has a
Lorentzian profile and I follow the recommendation of Anderson et al. 1990 to build the
power spectrum.

1.1 Oscillation frequencies

Oscillation frequencies are provided by lan Roxburgh.

1.2 Amplitudes

[ use the estimates of the maximum oscillations amplitude of Houdek et al. (1999)
(data found on MONS web site: http://www.obs.aau.dk/ jed/MONS/solarlike/mode-

param.html).

Pl e ——

30
L osxxl=1,m==1
E H+1=1,m=0

L oxxl=1,m=1

L &0l1=3,m=2

ol=3m=0,-1 g y b N

om=-2,-3 500 1000 1500 2000 2500
microHz

Figure 1: Amplitude as a function of frequency for /=0, the multiplet /=1, the multiplet
(=1 and the multiplet /=3 before correction.

I adopt as the amplitude distribution a bell shape similar to what is observed for the
Sun with a maximum of 40 ppm around the predicted maximum amplitude frequency.
Then, for /=0 modes, [ mimic this amplitude distribution by a Gaussian shape. I assume



the same amplitude distribution for modes ¢ # 0. To mimic whole disk intensity obser-
vations, I apply to £ # 0 modes visibility coefficients. These coefficients are calculated
for the COROT photometric system using the equation of relative variations of flux of
Watson 1988. I made a mistake in the computation of the visibility coefficients, then the
first time series sent to the data fitter corresponds to Figure 1, after correction I obtain
Figure 2 and this corresponds to the second time series sent.
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Figure 2: Amplitude as a function of frequency for /=0, the multiplet /=1, the multiplet
(=1 and the multiplet /=3 after correction.

1.3 Linewidths
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Figure 3: Linewidth as a function of frequency for a stellar model of M=1.5Mg,
L=6.5725L, Teff=6.4053D3 K, Xc=5.0D-2.

The linewidths are taken from Houdek et al. (1999) (data from MONS web site) (Fig-

ure 3).



1.4 Background stellar noise

[ adopt a stellar background noise similar to that observed for the Sun (Figure 4) and
based on Appourchaux et al. (2000).
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1.0000 & .

0.1000 ¢ .
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0.0100 .

0.0010 ¢ 4

0.0001 Lt i o

10" 10¢  10°

frequency (uHz)

Figure 4: Modeled background stellar noise a a function of frequency (deduced from Fig. 2
of Appourchaux et al. (2000)).

2 Simulated Time Series

2.1 Stellar signal, s,(¢)

The time series data is obtained by computing the inverse Fourier Transform of the built
Fourier spectrum.

2.2 Instrumental noise Time Series, s;(t)
- A white noise of 0.7 ppm for 5 observations days is introduced (s;1(?)).
- The orbital noise (f=(1/6092) Hz, amplitude=40 ppm) is also introduced (s;2(t)).

Then the final instrumental time series is: s;(¢) = s;1(¢) + s52(%)

2.3 Final Time Series, s(t)

The final time series with a sampling of 32 s and a total length of 150 days is:

s(t) = (s5(1) + si(1)) * w(t)
where w(t) is function of time: w(t) = 0 for some points and w(t) = 1 for the other
points.
[ introduce in w(t):
- the effect of the solar panels rotation (for the first two months of the total 5 months,
I remove data each 10 days over a period corresponding to the length of the orbit, the
same thing is done for the last 2 months of the total 5 months).

3



- a breakdown: I remove data over 3 days.

- the effect of the activation of the “magneto coupleurs”: I remove 4 points in the time
series spread out over the first half of the length of the orbit, I did the same thing for the
2nd half of the orbit.

Acknowledgments: F. Hill for the “stellar part” and M. Auvergne for the “instrumental
part”, R. Garrido and C. Van’t Veer for providing model atmosphere and other parameters
used for the computation of the visibility coefficients.
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On the construction of synthetic time series
Version 1.3

T.Appourchaux
April 5, 2002

1 Goal

The purpose of this document is to set a reference for generating artificial time
series simulating stellar power spectrum.

2 Background

2.1 Methodology

The generation of time series is based upon the formalism developed for digital
electronic processing. For instance, it is well known that for reconstructing a
given signal in time, the minimum sampling frequency is given by the spectral
content that we wish to recover. For example, let’s assume that the maximum
frequency i$ Vpaz, the sampling time corresponding is 1/2/Vpas, or the inverse
of the Nyquist frequency (=2vmqz). Other technical considerations such as
aliasing, may come into play but we leave that to the digital-reconstruction-
signal expert, or to the next version of the document.

When the Nyquist frequency is known, the number of points in the time series
will define the frequency resolution from which we can generate the sampled
spectrum. So for reconstructing a signal, it is not needed (it is superfluous. . .),
to generate a highly resolved spectrum (corresponding to a long time series)
when the time series itself i1s much shorter. The reconstruction will not be
better.

2.2 Convention of Parseval’s theorem

This is basically a theorem addressing energy conservation. Typically, projecting
a function of time into an expansion of orthogonal function of time (sine and
cosine) will not modify the energy (or the norm) of this function.

/pdl/ =g’ (1)



where p is the spectral density power of the process (in ppm?/uHz for example)
and o 1s the root mean square of the process in time.
For instance for white noise, we can write:

PyAv = o2 (2)

where Py is the power spectra density of the white noise (assumed to be in-
dependent of the observation), Av is the bandwidth over which this random
process is observed and o is the standard deviation of the random process in
time.

In the same spirit, for a sine wave we have that the energy of the wave is
given by: ., . .,

i (3
4 4 2
The left hand side of the equation represents the sum of the 2 terms that appear
in the positive and negative part of the power spectrum, while the right hand
side is just the expression of the energy of the wave (or the square of the rms
amplitude of the wave).

Now if we assume a lorentzian profile for a p mode peaking at A ppm?/uHz
and a FWHM of T then the integrated power is P = 2 x wAT' /2. The factor 2
in front comes from the fact that we need to take into account the negative and
positive side of the spectrum.

2.3 Mode amplitude in the literature

The theoretical mode amplitude computed by Houdek (1999) is the rms velocity
or intensity amplitude derived from the energy in the mode. Therefore the peak
amplitude in the power spectrum can be derived from the rms amplitude using
Parseval’s theorem and we have:

A=V, /)T (4)

This is assuming that the profile is lorentzian. It should be noted that the Vs
is usually derived from just A x T' and the 7 seems to be forgotten...unless I
made a mistake. To be discussed and verified.

3 Recipe for time series generation

Here are the steps needed for generating a time series obeying a prescribed
power spectrum:

e Assume a Nyquist frequency (vmqz) or a sampling time (At = 1/Vpaz)-

e Assume a length for the time series or the number of points in the power
spectrum (NV)



e The power spectrum is derived from whatever 1s known or assumed about
the instrument or the star. The units of choice here are ppm?/uHz

e Generate the power spectrum for half the number of points (N/2).

e Multiply the spectral density by the size of the frequency bin (1/N/At)
expressed in pHz if this is the unit of choice. This takes into account the
length of the time series.

e Take the square root of the power to get the amplitude

e Multiply the amplitude spectrum by a complex random variable with each
component having a normal distribution where the real (or imaginary
part) has a mean of 0 and an rms of 0.5. The real and imaginary parts
are independent of each other.

e The amplitude spectrum now obtained needs to be symmetrized because
the time series is real, i.e. F(—v) = F*(v). We get the final Fourier
spectrum.

e Invert the Fourier spectrum

e Check that the imaginary part is indeed negligible compared to the real
part.

The final check 1s done by comparing the results given by Parceval’s theorem.
Let’s assume that a noise of 1 ppm?/uHz has been generated over a bandwidth
of 16666 puHz (1 over 60 s). The expected rms value of the corresponding time
series should be /1 x 16666=129 ppm. So if A = T' = 1, then the rms is

VT=1.7T ppm

4 The Corot noise level

It does make sense to relate the 0.6 ppm in 5 days given in the Corot literature to
‘real” amplitude in the time series. The reference document is ‘Corot: scientific
program and specifications, March 1998’

The reference document mentions a signal-to-noise ratio of 15 as a baseline
for reaching a frequency precision close to what would be obtained with a large
signal-to-noise ratio (say 100). The signal-to-noise ratio of 15 combined with
a typical solar-like amplitude of 2.5 ppm gives a noise level to be reached in 5
days (typical solar-like mode lifetime) of 0.18 ppm?/uHz, The typical noise is
therefore in a 5-day frequency bin 0.64 ppm (0.18 x 2.3).

Now what does it mean for a mode? The peak amplitude in the power
spectrum is 0.18 x 15=2.7 ppm?/uHz. Then the total power of this mode with
a 5-day lifetime is 7 x 2.7 x 2.3 = 19.5 ppm?, or 4.4 ppm in the time series. This
latter number is nothing less but the ‘usually quoted amplitude of the mode’



time the square root of humble 7 (4.4=2.5 x+/7). Hope this clarify the situation
now.

5 A remark...

Please bear with me as this report was written under the influence of a flu, an
insomnia, an amnesia and other neurotic behaviours.



On expressing mode splitting with
Clebsh-Gordan coefficients and related issues

T.Appourchaux
September 14, 2001

1 Goal

The goal of this document is to express the splittings given in terms of (v, —
vg)/m as a function of the a; expansion based on Clebsh-Gordan coefficients.

2 Background

In the antique age of helioseismology (before the 90°s or so), mode splittings
were usually expressed in term of Legendre polynomials. Unfortunately, these
polynomials are orthogonal only on a continuous space (between [-1,1]) not on
a discrete set such as (-1,0,41) for {=1, for exanple. Therefore, other expansion
are required that can either be computed by hand or derived from quantum
mechanics.

3 Clebsh-Gordan expansion

Riztwoller and Lavely (1991) derived the following polynomials from quantum
mechanics. The splittings are expressed as follows:

I/( — V l 0 Z a; 1771 (1)
where m
Plm) =7 )
9 _6m2—21(l—|—1)
Prim) = 5 — 21+ 1) 3)

B 20m3 — Am(3l(1 + 1) — 1) A
2005 — 43I0+ 1) — 1) )




Pi(m) 70m* — 10m?(61(1 + 1) = 5) + 61(1 + 1)(I(I + 1) — 2)
m) =

! 7014 — 1002(6((1 + 1) — 5) + 6{({ + 1)(I({ + 1) — 2)
Please note that for all ¢ we have Pli(l) = 1. The polynomials are derived from
Egs (39) to (44) of Riztwoller and Lavely (1991). The derivation of (v, —vg)/m

is then straightforward using Eqgs (1) to (5).
Bon courage!

(5)



HH#3



Seismic interpretation of solar-like targets
Progress report

G. Berthomieu & Seismic interpretation group

Laboratoire Cassini, OCA, Nice

Participants: G. Berthomieu, J Ballot ¢ CEA group, MJ. Goupil, Y. Lebreton, J Lochard,
A. Mazumdar, E. Michel, J. Montalban & Liége group, P. Morel, J. Provost, I. Rozburgh

The aim of the group was to give priorities to 4 stars as COROT targets: HD49933,
HD43318, HD45067, HD57006. These stars are solar-like stars with different masses and
evolutionnary stages. Their position in the HR diagram is indicated in figure 1 where
evolutionnary tracks with (dashed line) and without (full line) core overshoot are also
plotted. HD49933 is at the begining of the main sequence phase, HD43318 and HD45067
may be either at the end of the main sequence phase or in a post main sequence phase
according to the physics used for stellar modelling, HD57006 is always in a post main
sequence phase.

H-R Diagram
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Logyp L/Lg
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Logyg Terr

Figure 1: Position of the four solar-like targets in the H-R diagram.

The work has been done in strong collaboration with the data analysis group through
a Hare and Hound exercise. (see the report of T. Appourchaux). Our aim was to use
the frequencies extracted from the simulated time series to infer the structure of the input
model. Following what has been done for the Sun, the method used by all the groups wasa
model calibration, that is trying to construct a stellar model which satisfied as closely as
possible all the constraints.

Different criteria have been used to achieve this task. For the seismic interpretation,
the frequencies are not used directly because we know from the solar case that they include
contributions of surface effects, activity,.... Thus linear combinations of the frequencies



where these contributions cancel more or less are prefered. The criteria which have been
used are the following:

e Position in the HR diagram and chemical constraints

o Large frequency differences =—> Mean density of the star

e Small frequency spacing = core structure = age, evolutionary stage

e Second difference of frequencies

= Acoustic depth of the convection zone and the helium ionisation zone

The last criterium gives information on the star independently of the stellar model.

The results and their interpretation have been discussed in a meeting in Paris. The
contributions of Lochard et al, Ballot et al, Montalban et al, Mazundar et al., Provost et al.,
are available at the web address: http://virgo.so.estec.esa.nl/html/corot /datagroup /third_hh.html.
This report gives a summary of their work.

A) Inferences from the position in the HR diagram and metallicity constraints

To construct a stellar model, the unknowns parameters are the mass M,, the age ¢,
initial helium and heavy elements abundances Y, Z/X, and the parameters describing the
convection: the mixing length parameter A, and the core overshoot parameter (,,.

Three constraints : the bolometric magnitude My,;, the effective temperature Ty,
and the surface metallicity F./H are generally derived from astrometric, photometric and
spectroscopic observations. They lead to select a range of parameters at given physics
which may correspond to different evolutionary stages for the star as is seen in figure 1.

for HD43318 and HD45067.
B) Seismic analysis: Large frequency differences

The large frequency differences are defined by: Av;, = v7n — 11 n—1 The mean value
at high frequencies is related to the mean density of the star.
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Figure 2: Large frequency differences for the input model (triangles), the closest model
losanges) and data from simulated time series of HD43318 (full dots).
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As seen in figure 2, there is a systematic difference between the large frequency dif-
ferences from the input model and closest model in the case of HD43318. This is due to



the fact that the simulated time series for that star includes “surface and activity effects”
which have a quasi linear dependence on the frequency.

C) Seismic analysis: Small frequency differences

The small frequency differences are sensitive to the properties of the stellar core and
thus to the age and evolutionary stage. They are defined by:

57/0,2 =Von —V2,n-1
dvo1 = vo,n — (Vin + Vin—1)/2

. ! . ! . . I . I . I
600 800 1000 1200 1400 600 800 1000 1200 1400

o L . ! . !

v(uMz) v(uMz)
Figure 3: Small frequency spacing 01 2 and d1vg 1 for two main sequence (heavy and
dashed line) and one post main sequence model (thin line) of HD45067.

It is seen from figure 3 that d1g ;1 is the more sensitive diagnistic of the age i.e. the
evolution state of the star. With this indicator we can discriminate between a main
sequence and post main sequence model.

D Second difference of frequencies: Acoustic depth of the convection zone and
Helium ionisation zone

Discontinuities in sound speed derivatives introduces oscillations in the frequencies.
Such discontinuities occur at the basis of the convection zone where we have an adiabatic
gradient in the convection zone and a radiative gradient in the radiative zone just below.
There is also a rapid variation of the adiabatic exponent I' in the ionization zone of He-
lium IT which induces a rapid variation of the sound speed. The oscillating terms in the
frequencies are visible in the second difference in frequencies. Their periods are related to
the acoustic depth of the layer where the discontinuity takes place.

Table 1: Comparison of the acoustic depths of the basis of the convection zone and location
of the helium IT ionisation zone estimated from the simulated data and their theoretical
value from the input model.

* TCZ Tcz 1input THerr THe; input

HD43318 3763 +134 3877.8 1518 + 98 1614.7
HD49933 1445 + 68 1434 663 + 49 660



This determination of the acoustic depths 7z and 7x.,, is important because it may
be used to select the closest model when some problems arise with the small spacings. This
has been the case for HD49933 due to the problems with rotational splitting (see report
of T. Appourchaux) and the values derived for 7¢z and 7p.,, have been used to calibrate
different global parameters of the model. Figure 4 illustrates the calibration of chemical
composition with acoustic depths.
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Figure 4: Calibration for HD49933 of helium abundace and metallicity with acoustic
depths of convection zone boundary and helium ionisation zone constraints versus mean
density constraint derived from the large frequency differences.

E. Results of H&H3 exercise

Table IT illustrates the results of HH3 exercise and the kind of problems encountered.
All the results obtained by the different groups and discussed during the Paris meeting are



not reproduced here but can be seen on the web.It must be kept in mind that the results,
and thus their interpretation, depend on the assumptions which have been made first on
the construction of both theoretical models and simulated time series.

For the first star HD49933, the input and output models agree despite the fact that
problems have arised in the identification of modes [ = 0 and 2 turning the small spacing
unusable constraint. (see T. Appourchaux’s report). The results for the second star
HD43318 are more instructive. The input model was constructed including microscopic
diffusion of helium and heavy elements and some additional mixing to prevent surface
abundance anomalies. The search for closest model was made without including any
diffusion mecanism. This explains the difference in mass, surface abundaces and central
hydrogen. However the acoustic depths of convection zone base and heliumlI ionisation
zone are close and more surprisingly the convective core radius. It seems as if a difference
in overshoot parameter compensated the lack of diffusion. This is being studied.

The case of HD45067 is particular because the input model was constructed with a
metallicity totally out of the range admitted for that star as it is seen in the table. The
luminosity too was derived with an old solar bolometric magnitude. The search of closest
model has shown this difficulty to fit with constraints. Nevertheless, the use of frequencies
allowed to find acoustic depths of convection zone base and heliumlII ionisation zone close
to the those of the input model and also the radius of the convective core.

No theoretical interpretation has been carried for the star HD57006.

Table II: Values of the mass (in solar unit) M /Mg, the surface abundances in helium
and heavy elements Yy, Fe/H, the central hydrogen content X., the acoustic depth of
convection zone 7¢z and heliumll ionisation zone 71, ,,, the core radius r... and the core
overshoot parameter(,, for the input and output (closest model) models.

* M/M® Ys Fe/Hs Xc TCZ THegr Tcore Cov
HD49933
Input 1.25 0.26 -0.25 0.5 1434 660 0.093 0.2
Output 1.25 0.27 -0.22 0.505 1438 667 0.097 0.2
HD43318
Input 1.45 0.19 -0.116 0.109 3878 1615 0.061 0.05
Output 1.38 0.26 -0.08 0.18 3763 1471 0.062 0.15
rcz
HD45067
Input 1.31 0.29 +0.17* 0.12 0.78 0.059 0.09
Output 1.18 0.27 -0.23 0.115 0.84 0.0595 0.15

* out of the observational range Fe/H ~ —0.174+0.1



F. Conclusion

The results of the exercise have shown our ability to recover the evolutionary stage
of the star and properties of the structure, particularly the acoustic depth of the basis of
the convection zone and of the HeliumlI ionisation zone, independently of a model. The
radius of the convective core is also in ageement with input one. The introduction in the
frequencies of the surface effects induces a shift in the values of the large differences Ay,
and thus some uncertainty in the calibrationof the mean density of the star. For small
frequency differences this effect can be suppressed by dividing them by Auvy .

As far as the COROT targets are concerned, it is suggested to give a good priority to
the stars HD49933, HD43318 and HD45067. A lower priority is given to the star HD57006

due to the complexity of its spectrum induced by the fact that it is a rather evolved star.

More work is to be done on the signature of diffusion and core overshoot on the
frequencies, on the effect of activity and surface effects, on evolved stars. Moreover, only
the direct problem of looking for a stellar model which satisfies all the constraints has been
considered. Inversion technics adapted to the COROT data must be developped.

Despite the fact that some rotational splitting has been added in the H&H exercise
no work has been done on the rotation. Such a work is planed for next exercise.
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ABSTRACT

With more than 30 years of experience in extraction
of eigenmodes from power spectra of solar signals, we are
now almost ready to apply this knowledge onto the fore-
coming missions: COROT and Eddington. Unfortunately,
the fitting task differs by 3 orders of magnitude; COROT
will be able to get time series of stellar light for some 30
stars, while Eddington will be able to gather such data for
about 50000 stars. While for COROT, our current tools
can be applied by hand, the case of Eddington is somewhat
more complex. We are looking forward having automatic
fitting procedures that will allow to recover mode param-
eters for about 90% of the solar-like stars. Unfortunately,
about 10% of these stars will require some more delicate
attention that will cost time to take care of. We will use
the example of the infamous HD57006, known to be quite
evolved with a difficult eigenmode spectrum, to explain
how a star can evolve from an easy-to-fit target (90% of
the solar-like stars) to a difficult-to-fit target (10% of the
remaining stars). In the latter case, new techniques for
detecting narrow peaks (g-mode like) out of broad peaks
(p-mode like) has been devised in the context of the hare-
and-hound exercise of COROT. This latter and other tech-
niques will be used to implement the automatic fitting
procedure for the remaining 10% of Eddington solar-like
stars.

Key words: Stars: structure — Data analysis: time series —
Data analysis: spectra fitting

1. INTRODUCTION

In the very near future, there shall be a fleet of space
missions aiming at understanding the internal structure
of the stars: MOST!, COROT? and Eddington.

All these missions will observe global oscillations of
the stars by measuring their tiny light fluctuations. The
detection and identification of these modes of oscillation
is the challenge of all these missions. This challenge is for

! Microvariability and Oscillations of Stars, a Canadian mis-
sion to be launched in June 2003

2 COnvection and ROTation, a CNES mission to be launched
in mid 2006

most stars extremely difficult (e.g. Cepheids) but easier for
solar-like stars. When the identification is achieved, peak
bagging can be performed. The theory of mode identifica-
tion and peak bagging has been reviewed by Appourchaux
(2003); it is now believed to be well understood.

In the context of the COROT mission, the practice of
mode identification and peak bagging is developed through
the use of hare-and-hound exercise. During this exercise,
it appears that a very challenging star (namely HD57006)
brought a new dimension to the usual challenge 3. Here we
would like to take this star as an example of the kind of
difficulties that the Eddington mission may face. For that
purpose, we will follow HD57006 throughout its lifetime
from the ZAMS* until its nowadays evolutionary state.

2. MODE IDENTIFICATION AND PEAK BAGGING

The reader may wish to read the review on the subject by
Appourchaux (2003), we summarize that review for the
sake of completeness.

The mode identification for solar-like stars is performed
using the Echelle diagram. It is based on the fact that the
low-degree mode frequencies of successive orders (n) of a
given degree (I) are distant from each others by roughly
the acoustic diameter of the star (Avp). The piling up of
section of the power spectrum (of the stellar time series)
cut into piece of length Ayy produces ‘ridges’ of power
along an ideal vertical line. The location of the ridges with
respect to each other provides the means of tagging the
ridges with a given [.

The next step is the peak bagging operation which
theory can be found in Appourchaux et al. (1998) and
Appourchaux (2003). It consists in fitting the power spec-
trum using Maximum Likelihood Estimators (MLE) and
a model of the mode profile including parameters such
as frequencies, linewidth, splittings, background noise and
profile shape. Error bars of parameters can be derived as
well as the significance of these parameters (Appourchaux
et al., 1998).

3 See papers of the Third COROT week in
http://www.astro.ulg.ac.be/orientation/asterosis/week3
* Zero Age Main Sequence

Proc. 2nd Eddington workshop “Stellar Structure and Habitable Planet Finding”, Palermo, 9-11 April 2003 (ESA SP-538,

July 2003, F. Favata, S. Aigrain eds.)



3. THE CHALLENGES IN THEORY

3.1. COROT vs EDDINGTON

The COROT mission shall be able to observe up to ten pri-
mary seismological targets for which there will be a high
signal-to-noise ratio as to perform proper mode identifi-
cation and peak bagging. The COROT secondary targets
can amount to less than a hundred. The Eddington mis-
sion shall be able to observe more than 50000 stars.

For COROT, the primary targets can be analyzed by a
single scientist. The mode identification and fitting can be
carefully analyzed. Modes out of the main stream can be
fitted by hand, and each fitted mode can be assessed for its
validity. One could imagine that the secondary targets are
also analyzed by the same scientists; the task may start
to be somewhat difficult to handle.

For Eddington, this hand crafted work is to be aban-
doned. Automated ridge identification, mode fitting and
fit rejection has to be implemented. At the time of writ-
ing, the first task is still done by hand using the Echelle
diagram and adjusting the large separation as to have ver-
tical ridges. We could envisage a step where after comput-
ing the power spectrum, one identifies the excess power,
filter the excess power and compute the Fourier trans-
form for extracting the large separation (or as a matter
of fact Avp/2); this technique was used by Gelly et al.
(1986) on the a-Cen data. The next step is to compute
the Echelle diagram using the derived large separation.
As for the proper ridge identification, one could try to fit®
2 pairs of peaks (I =0 —2 and | = 1 — 3) over Auyp; the
amplitude of the fitted peaks and their location would au-
tomatically provide the degree tagging. The mode fitting
can then be done as usual. The last step is the validation
of the fit. It is envisaged that each mode be assessed for its
significance using the likelihood ratio test (Appourchaux
et al., 1998).

3.2. THE STELLAR EVOLUTION

But the real challenges of either COROT or Eddington
may lie beyond these mundane details. The identification
and fitting steps described above can be applied to well-
behaved solar-like stars; that is about 90% of the solar-
like stars to be observed by Eddington. The remaining
10% are evolved solar-like stars for which the automated
techniques fall apart. Here we should outline that we do
not really know the proportion of evolved stars to that of
good stars. Even if we were to have only 0.1% of evolved
solar-like stars in the Eddington mission, we would have
the same challenging difficulties. As we will outline, this
part of the challenge is not to be neglected.

Here we would like to follow the evolution of a star, to
scan the many stars of Eddington. We start with a star
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Figure 1. The Hertzsprung-Russell diagram of HD57006. We
computed the mode frequencies of models labeled from I to VIII
located at different positions on the evolutionary track of the
H-R diagram. The first four locations follow the evolution of
the star until the central hydrogen content is about 5%. The
last four locations follow the evolution of the star during the
burning of hydrogen in shell. The transition from model IV to
V is too fast by stellar standard but likely long enough by human
standards for being observed.

at the ZAMS, and study how the Echelle diagram evolves
with the star, and how the difficulties evolve.

Here we chose the COROT primary target HD57006
which scientific value is being assessed by the Seismol-
ogy Working Group of the eponymous mission. The as-
sessment is being performed in the frame work of the
third hare-and-hound exercise of COROT (Appourchaux,
2003).

The star HD57006 has been represented by a 1.65M,
stellar model; that is still a solar-like star, according to the
definition of Appourchaux (2003), when not evolved. It is
nowadays sufficiently evolved as to have entered the phase
of burning hydrogen in shells, i.e. it has an helium core.
This produces a large peak in the Brunt-Vaisala frequency
at the core of the star. It leads to the existence of the so-
called mixed modes that have a p-mode character in the
outer stellar regions, and a g-mode character in the stellar
core. The mixed modes, if detected, are powerful tools (like
the g modes) for understanding the internal structure of
the star. Unfortunately, their mixed character make them
difficult to detect for they do not follow the asymptotic
relationship given by Tassoul (1980); in other words they
do not line up for making ridges.

In order to see how the Echelle diagram changes with
the evolution of HD57006, we computed frequencies of
low-degree modes all along the evolution track of the star
as outlined by Fig. 1. The Echelle diagrams for each evo-
lution stage in the central hydrogen burning phase are
shown in Fig. 2; and for the hydrogen burning phase in
shell in Fig. 3.
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Figure 2. Echelle diagram for the first four stages of the evolution of HD57006 during the central hydrogen burning phase; I (left,
top), II (right, top), III (left, bottom), IV (right, bottom). The echelle diagrams display the order as a function of frequency; the
large separation is annotated atop the diagram. The star and triangle are the [=0 and [=2 modes; the plus and square are

the l =1 and l = 3 modes.
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Figure 3. Echelle diagram for the first four stage of the evolution of HD57006 during the hydrogen burning phase in shells; V
(left, top), VI (right, top), VII (left, bottom), VIII (right, bottom). The echelle diagrams displays the order as a function of
frequency; the large separation is annotated atop the diagram. The star and triangle are the [=0 and =2 modes; the plus and
square are the | =1 and | = 3 modes.



In the first evolution stage, the mode identification and
fitting would be rather classic. The large separation de-
creases due to the increase in the stellar radius. The ridges
get closer from each other; the | = 0 and [ = 2 mode-ridge
separation decreases from 8 pHz to 4 pHz in this phase.
This stage of the evolution is likely to be similar to that
of 90% of Eddington’s solar-like stars.

In the second evolution stage, the mode identification
and fitting gets more difficult and challenging. The sepa-
ration between the ! = 0 and / = 2 mode ridge decreases
even more to a mere 2 yHz. The tagging of each ridge could
be made extremely difficult if the linewidth mode is about
1 puHz. Nevertheless, it is possible to fit the mode pair as
a single mode giving very limited information about the
internal structure of the star. Mixed modes start to ap-
pear especially for [ = 1. The [ = 1 mode ridge is pro-
gressively destroyed and disappears completely, rendering
their tagging almost impossible. The [ = 1 modes start
to appear everywhere and are even sometimes right next
to the other regular p modes. Due to their mixed char-
acter, the [ = 1 modes are likely to be long-lived modes.
Due to their erratic location in the Echelle diagram the
mixed [ = 1 modes are bound to have mode frequencies
close to the short-lived modes; in which the identification
becomes even more difficult. This stage of the evolution
is likely to be similar to that of the remaining solar-like
stars of Eddington.

3.3. STELLAR ROTATION

An additional difficulty to the mode identification is the
influence of the rotation upon the determination of the
mode frequencies. When the small separation (dp2,d13) is
about 2-3 times the rotational splitting, the proper deriva-
tion of the frequencies of the [ =0—2 and [ = 1 —3 modes
get ambiguous. It leads to small separation being negative.
This ambiguity is likely to happen for solar-like stars with
a rotational splitting ranging from 1 to 5 pHz. In this case,
it is required to fit the mode parameters not locally around
the [ =0—2or [ =1 — 3 pair but globally over the spec-
trum as already implemented by Jiménez et al. (2002) and
Gelly et al. (2002) (See Neiner & Appourchaux in these
proceedings).

4. HD57006 AS AN EVOLVED STAR

The star HD57006 is one of the candidate primary target
of COROT. In the framework of the third hare-and-hound
exercise of COROT Seismology working group, a 150-day
long time series was generated by one of the authors (TT)
with frequencies provided by another author (GB). The
task of the data fitter (the 2 other authors: OM and TA)
was to derive the frequencies of the detected modes.
Figure 4 shows the power spectrum of the time series.
The distribution of the modes in the Echelle diagram in
Fig 4 does not permit to take any conclusion about any

[ but [=0, in addition for higher orders it starts to be
scrambled. As a matter of fact we realize a posteriori that
the single ridge attributed to the [ = 0 modes was mixed
with the [ = 2 modes (See Fig 3). The detected modes fall
in 2 categories:

— short-lived modes (I tagged or unknown [)
— long-lived modes (unknown [)

A specific strategy for each category is described hereafter.

4.1. SHORT-LIVED MODE DETECTION

The | = 0 modes were fitted as single modes using MLE.
The other detected short-lived modes for which there was
no possible [ tagging were also fitted in the same manner.

4.2. LONG-LIVED MODE DETECTION

As mentioned in the previous section, long-lived modes
appear because of the mixed character of the modes. They
can be seen in Fig 4 as sharp peaks. There are two main
cases to be considered:

— long-lived mode alone
— long-lived mode embedded in short-lived mode

The first case happens at low order (low frequency below
300 pHz). The second case happens at higher frequency
(typically order 13).

Narrow peaks alone: If one considers a pure noise signal
with a y? statistical distribution, the probability that the
power within one bin is greater than m times the mean of
the noise power, o, is:

Pn(m) ~ Ne ™ (1)

By setting a given value for Px(m), for instance 10%
(which means 10% probability that a peak due to noise
is above m), choosing a window range in our spectrum
that contains N bins, and estimating o, one can derive
using the equation (1) the correct value for m. This way,
we have a statistical test for detecting the peaks that can
be considered as having a low probability of being due to
noise. This classical test was used by Appourchaux et al.
(2000) for detecting long-lived p modes and g modes in
the SOHO data.

Narrow peaks mixed with short-lived modes: Above
300 pHz the peaks that we wanted to analyze are among
broad modes (See Fig 4). Therefore, the application of the
aforementioned test directly to the power spectrum is not
very useful because it detects peaks that are part of a sin-
gle broad mode. In this case we cannot assume that the
detected peaks are all individual modes. Furthermore in
some cases the detected peaks are very close to the broad
modes; it becomes impossible to assume reliably if they are
sharp modes or if they are just part of the broad mode. We
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need to find a test that can distinguish the broad modes
from the sharp modes.

In order to solve this problem, we devised a technique
that:

1. Fit the short-lived modes using MLE

2. Correct the spectrum for the fitted model

3. Apply the aforementioned test as if we had only narrow
peaks

Step 1: Assuming that p modes are stochastically
excited oscillator, one can derive that the power spec-
trum of p modes oscillator is distributed around a mean
Lorentzian profiles with a y2 probability distribution (An-
derson et al., 1990; Appourchaux et al., 1998). The power
spectrum of the p modes can be described as:

Pv) = M@)F(v), (2)

where F(v) is a random function with a x? statisti-
cal distribution with 2 d.o.f, and M (v) is the model of
the fitted mode made of a single Lorentzian profile plus
noise. One can fit this model to the observed power spec-
tra using the Maximum Likelihood Estimators technique
(Anderson et al., 1990; Toutain and Appourchaux, 1994);
this is the classic and well-known approach used for short-
lived modes.

Step 2: After having done the fitting, one can divide
the power spectrum by the fitted profile M'(v), one ob-
tains:

., PW)
P(v) = 30 ~ F) (3)

In a first approximation P’ () has a x? statistical distribu-
tion with 2 d.o.f. This is an approximation because M'(v)
is derived from data and has also a statistical distribution
that should be taken into account. We have performed a
Monte-Carlo analysis confirming that indeed P'(v) has
such a statistical distribution. This way we solved the
problem of the mixing between the sharp modes and the
broad modes.

Step 3: Applying the x? test to HD57006 spectrum,
we set Py (m) = 10%, 0 = 1, and a window size of 30 puHz
(corresponding to 389 bins). This last step is the same as
for the long-lived modes alone.

For each window we use the stepped approach. The
result of which can be seen in Fig. 5.

The comparison with the original frequencies® gave
that only about 1 peak was misidentified over the band
200uHz-500pHz. On average we should statistically have
had 1 peak (+ 1) due to noise. It validates the approach
taken for detecting long-lived modes either singled put or
embedded in short-lived modes.

4.3. | TAGGING OF THE FREQUENCIES

The [ tagging of the frequencies of the modes could not
be derived from the Echelle diagram apart for the [ = 0
modes. As a matter of fact, due to the width of these
p modes, we may have fitted the mean location of the
=0 — 2 ridge.

The [ tagging for the non-l = 0 p modes would need to
be derived from the splitting. After having derived the fre-
quencies of the modes for the 2 categories, we performed
a correlation analysis on the extracted frequencies for get-
ting the signature of a possible splitting. Since we did
not find any splitting signature, we could not tag further
the identified modes. At least we were able to derive the
frequency of the modes for the 2 categories as explained
above.

Our inability to properly tag the frequencies of the
modes has serious consequences for the usefulness of such
a star for understanding its internal structure. We could
imagine a scheme where we could search for the stellar
model for which mode frequencies would match the fitted
mode freqeuncies. Given the erratic behaviour of the [ = 1
mode frequencies, this exercise could be ‘easily’ achieved

6 Comparison performed a posteriori
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Figure 5. Result of the test for two different ranges of frequencies. The fitting is presented on the top of the figure, and the power
spectrum divided by the fitted model, as well as the bins above the 10% probability level, are presented on the bottom of the figure.

for comparing input frequencies and output frequencies of Cepheids. It will involve proper computing of the radiative
a stellar model coming out of a single routine (e.g. the transfer that is likely not to be easy. Nevertheless, a simple
CESAM code). This is only of pure academic interests as approximation to that problem is well known (Toutain and
the stars do not follow the CESAM code. .. Gouttebroze, 1993). This additional color information is

. . likely to be useful for COROT, and should become a must
The only way out would be to use color information ¢ . Eddington.

for tagging the frequencies of the modes. This method
is not used for solar-like stars but is very useful for say



5. CONCLUSION

In this paper, we concentrated mainly on the fitting chal-
lenges that the COROT and Eddington missions are going
to face. For each stage of the stellar evolution there are
two challenges to be solved:

— Challenge I: power spectra fitting for solar-like stars
in their hydrogen burning phase

— Challenge II: power spectra fitting for solar-like stars
in their hydrogen-shell burning phase

Challenge I provides no major problem for fitting
most of star spectra; this can even be automated.

Challenge II is mainly related to properly identify
the degree of the modes. This challenge is much more dif-
ficult and could cost a lot of time as it is only solvable by
hand at the time of writing. For this purpose, we devised
an automated method for identifying long-lived modes em-
bedded in short-lived modes. So we have been able to solve
part of Challenge II. The bulk of this challenge may only
be solved by covering a given evolutionary track with stars
of similar masses; thereby trying to follow with different
stars how the mixed modes could appear. Additional infor-
mation related to color could be brought in for the degree
identification. This could make the automation feasible.
The automation of the mode identification and fitting for
Challenge II is still in its infancy but 2 research tracks
have been laid out. They shall be tested with COROT and
perfected for Eddington.

ACKNOWLEDGEMENTS
This review benefited from the collaboration with the Data
Analysis Team of the Seismology Working Group of COROT.
Thanks to Ian Roxburgh for interesting discussions, and to
Coralie Neiner for commenting on the manuscript.

REFERENCES

Anderson, E. R., J. Duvall, T. L., and S. M. Jefferies: 1990.
ApJ 364, 699-705.

Appourchaux, T.: 2003. Apé&SS 284, 109-119.

Appourchaux, T., C. Frohlich, B. Andersen, G.
Berthomieu, W. Chaplin, Y. Elsworth, W. Fin-
sterle, D. Gough, J. T. Hoeksema, G. Isaak, A.
Kosovichev, J. Provost, P. Scherrer, T. Sekii, and T.
Toutain: 2000. ApJ 538, 401.

Appourchaux, T., L. Gizon, and M. C. Rabello-Soares:
1998. A&A Sup. Series 132, 107.

Gelly, B., G. Grec, and E. Fossat: 1986. A¢6A 164, 383—
394.

Gelly, B., M. Lazrek, G. Grec, A. Ayad, F. X. Schmider,
C. Renaud, D. Salabert, and E. Fossat: 2002. A&A
394, 285-297.

Jiménez, A., T. Roca Cortés, and S. J. Jiménez-Reyes:
2002. Solar Physics 209, 247-263.

Tassoul, M.: 1980. ApJ Sup. Series 43, 469.

Toutain, T. and T. Appourchaux: 1994. A&A 289, 649.

Toutain, T. and P. Gouttebroze: 1993. A6 A 268, 309.



HD43318



Characteristics of input model HD43318
Structure and frequencies

G. Berthomieu

Global constraints on the input model
3.79 < log(Terf) <3.80 = Tess~ 6280+ 100°K

2.75 < Mbol < 2.95
[Fe/H] = —0.18 £ 0.1

With Mbolg= 4.75 and (Z/X), = 0.0245

0.72 < log(L/Lg) < 0.8
0.01656 < Z/X < 0.02038
Rotation

Vsini =6+ 4km/s

If we take i = 45° and a mean radius 2.210! then

Vpor =~ (1.825 £ 0.3)uH Z



Input model of HD43318

Properties of the input model:

M/Msol= 1.45
R/Rsol= 2.05
L/Lsol= 5.63
log(L/Lsol)= 0.7505
Age (My ) = 2275.6
Teft= 6212.09

Zs =0.01493

X =0.796

Y, =0.1886
Zs/Xs =0.01875

X.=0.109
T. = 2.2375107

Zzcert = 0.853
Ticext = 3377.8S
Z2Gamma = 0.978

ToGamma = 1614.7 s
Toccore = 0.0514

a=1.6
overshoot ¢ = 0.05



Comparison of HD43318 frequencies

Frequencies extracted by P. Boumier and J. Lochard from temporal series
computed by T. Appourchaux:

P Modes (microHz) nu0 Err0 nul Errl nu2 Err2 nu3 Err3

617.45 0.03 641.29 0.04 613.02 0.01 633.47 0.05
670.95 0.03 694.43 0.04 666.74 0.03 687.18 0.03
724.64 0.04 749.02 0.05 720.43 0.03 741.85 0.25
780.22 0.06 805.00 0.04 775.98 0.05 797.84 0.10
836.50 0.07 861.30 0.06 &832.28 0.07 854.59 0.10
892.77 0.06 917.18 0.07 &888.56 0.07 910.50 0.11
948.16 0.08 972.63 0.10 944.02 0.10 966.44 0.08
1004.13 0.10 1028.77 0.15 1000.10 0.10 1022.65 0.31
1060.95 0.11 1085.87 0.12 1056.48 0.12 1079.26 0.17
1118.09 0.13 1143.44 0.12 1114.05 0.15 1137.47 0.39
1175.62 0.20 1200.93 0.16 1171.55 0.16 1194.69 0.35
1233.74 0.54 1258.44 0.17 1229.08 0.30 1252.27 0.08
1290.62 0.74 1316.13 0.17 1287.03 0.45 1310.87 0.23
1346.87 0.45 1374.11 0.19 1343.53 0.32 1367.89 0.45
1405.45 1.17 1431.70 0.25 1402.03 1.22 1425.07 0.28
1464.04 0.39 1489.60 0.40 1460.18 0.72 1483.86 0.91
1522.87 0.97 1547.39 0.40 1518.76 0.82 1535.21 0.23

Low Frequency modes (microHz)

474,77 478.86 501.16 506.94 514.66 521.68 522.53 531.56
558.26 562.89 563.97 586.96

with same error 0.08



Comparison of HD43318 frequencies

Modes 1=0

HD43318 Frequency differences ( Model — IAS )  for |=0
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Comparison of HD43318 frequencies

Modes 1=2

HD43318 Frequency differences ( Model — IAS )  for |=2
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STAR #4: HD 43318

Terr = 6280+ 100 K — logT: ;4=[3.791,3.805]
Mbol:[2-7572-95] — log L/L@:[O.72,0.80]
Convention: My, o = 4.75
[Fe/H]=-0.18 + 0.10 — Z/X=[0.0129,0.0204]
v sini= 6 £ 4 km/s
Frequency analysis — 1=0,1,2,3

Models calculated:
M~ 1.2 to 1.4 Mg
X=0.70 to 0.72
7=0.011 to 0.013
Qo = 0 or 0.2
No diffusion

CONCLUSION:
Cannot fit dvge and especially drq3 without
overshooting.

Best model so far:
M=1.3 M
Z—=0.013
X=0.70
Ay = 0.2



HD 43318 — Seismic Interpretation

JEREMIE LOCHARD

Observatoire de Paris-Meudon, France

Collaborators: Anwesh Mazumdar, E. Michel and M-J. Goupil



We report on the seismic interpretation of the frequencies of the star

HD 43318.

Global Parameters of HD 43318

o [.4=6280+100 K
o My, — 2.85 + 0.10
o [Fe/H] = —0.18 + 0.10

e vsini =6+ 4 km/s

Original model produced by Gabrielle Berthomieu
e Time series produced by Thierry Appourchaux

e Frequencies extracted by Patrick Boumier & Jeremie Lochard



Estimation of acoustic depths of base of CZ and Hell

ilonisation zone

Discontinuities in sound speed derivatives at the Hell ionisation zone and
the base of the convective envelope give rise to oscillations in the

frequencies.

We fit a function of the form

a d
621/(n, e) — (30 + it + 22) sin(4 TVneTCZ T+ ¢CZ)
Une Vhy

by by | .
+ (bO + — + 2) sm(4 TVn ¢ THell + ¢He|l)'
Uny Vn,ﬁ

to the second differences of the data, taking into account the errors.



Estimation of acoustic depths of base of CZ and Hell

ilonisation zone
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The fit provides us with values for the acoustic depths of

e the base of the convective envelope: 7c; = 3763 £ 134 s

e the Hell ionisation zone: .77 = 1518 £ 98 s

These estimates help to search the closest model.



Stellar Models

Evolutionary tracks were computed with CESAM using

CEFF equation of state

OPAL opacities

NACRE nuclear reaction rates

e MLT convection

Eddington atmosphere

No diffusion

Frequencies were computed with ADIPLS.



Variable parameters of models

e Core overshoot (in Hp) ; . 0 — 02
e Mixing length (in Hp) ; : 16 — 1.8
e Metallicity ; : —0.28 — —-0.08
e Initial Helium abundance : 026 — 0.28

All CESAM models are computed with a “high” precision parameter to
avoid irregular features at convective zone boundaries

— more accurate models, but very time-consuming!!

Technique

e For a particular combination of these parameters we vary the mass of
the model to check for overlap between tracks and the

global parameters of on the HR diagram.

e Compare large and small separations of the “data” with the

computed values to find the closest possible model.



Some preliminary inferences from global parameters

Both MS and post-MS models are possible at the same point within the
HD 43318 box on the HR diagram.

3.0 =
= I |
3.5 =
i - i
\
- \ -
Stee (M, d,,)
- RN (1.25,0.0) 0— — — -
S (1.30,0.2) me
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3.84 3.82 3.80



Some preliminary inferences from global parameters

°
— Moderate to high overshoot (0.1-0.2 Hp)
— Low value of a
— Higher metallicity ([Fe/H] = —0.08 to —0.23)
o

— Moderate overshoot
e Main sequence models are excluded for

— Low or zero overshoot

— Lower metallicity



Table showing overlap of Main Sequence tracks and HD 43318 parameters

Parameters

doy= 0.0

dey= 0.1

doy= 0.2

[Fe/H] | Yo

a=10| «

I
—

.8

a=1.6

a=1.6

0.28
0.27
0.26

—0.08

0.27
0.26
0.25

—0.18

0.27
0.26
0.25

—0.28

R
noooponoin !
09

Q
I
—
o0

No Main Sequence stars within HD 43318 box

_ Main Sequence stars of mass between M7 and M, cover HD 43318 box partially

_ Main Sequence stars of mass between M7 and Ms fully traverse HD 43318 box
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Small Separations

e Between / =0, 2 modes and ¢ =1, 3 modes:

do2 = [Vno — Vn-1,2]/6

di3 = [Vn1 — Vn—13]/10
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Small Separations

e Between / = 0, 1 modes:
dor = [Vno— (Vn1 +vn_11)/2]/2

dio = —[Vn1 + (Vno + Vn+1,0)/2]/2

Small separations d,, and d,, (uHz)
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Approaching the closest model

e Average value of large separation provides initial estimate of the

mean density of the model:
p/po = 0.17

e Explore the sensitivity of different features of the large and small

separations to the six model parameters:
M, Age, Y, [Fe/H], doy,
e Simultaneous matching of large and small separations by tuning these
parameters is desirable.

e Several “best case” scenarios are identified, and a comparison of the
deviations of the large and small separations of the models from the

data is made to select the closest model.



Closest Model

Our closest model for HD 43318 corresponds to

M/M, = 1.38

X.=0.18

[Fe/H] = —0.08

Y =0.26

e d,, =0.15

o =1.6

Values for

e p/p, =0.1713
® Tcy =3763 s

® THell — 1471 s



Closest Model
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Closest Model
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Conclusion

We were able to:

e get an estimate of p through A,

e tune d,, and [F'e/H] to approach dy,

We were not able to:

e reproduce the pattern of large and small separations at all frequencies

e retrieve the behaviour of dy; and dyg
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BCZ extraction: used method

e Sound-speed sudden variation (located at an acoustic depth 7)
leads to oscillations in seismic observable parameters as

o sin(274w + )

e These oscillations can be found directly in the frequencies (Mon-
teiro et al. 1994, 2000), large or second difference (Av & dov)
(Gough 1990);

e The oscillation corresponding to the Base of the Convective Zone
(BCZ) is found with a Fourier analysis (based on sine-wave fits) of
the residue obtains by removing a smoothed curve to the choosen
variable.

o In some cases (like the
Sun) the expected signal-to-noise ratio in dor is not worse than
in the other magnitudes.

e Used 091 is robust, fast and easy to set up.
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Simulated observations
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e Figenfrequencies from a model of & Cen A

e Monte-Carlo simulations of different observation lengths
e Error bars: 1/T

e 42 modes (/ = 0 —2) from 1.7 to 3.2 mHz

— BCZ correctly derived:
* 50% with 90 days
* 75% with 120 days
* 85% with 150 days



VIRGO 150 days

e 12 sets of 3-months solar data

e BC7Z extraction with this method =- 8 cases out of 12 correctly
derived

e Bad cases due to stochastic excitation

VIRGO 150 days
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HD 45067: 0,v analysis

e A smooth component is removed
— linear fit ag + ayw + %% (Basu, 1997)
e Different Fourier analyses are done

— using only / =0,10r 4 =0,1,2

— and using different frequency ranges

v € [0.8;1.3] mHz
¢ =0,1,2: Black line; £ =0, 1: Red line
dotted line: —

<2Av>
HD45067
0.4F T i
L I
I
; :
0.3F : 1
o F |
— r 1
Y L 1
< 0.2 b
= [
&=
0.1F ! g
N I
g !
0.0: d . . I . . . I . . . . : . u
0 2000 4000 6000 8000

7 (s)

e 1st peak (~ 1500 s): Hell ionization
e 2nd peak (~ 3000 s): BCZ (7)
e 3rd peak (~ 5500 s): alias of the 1st one.
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HD 45067: d,v analysis (2)

e Found 7g. and 7pcyz are used as guess to fit the non-linear ex-
pression: (ag+ %) sin(27Hew + ¢ne) + (bo + %) sin(2mczw + ¢Bc7)

(Basu, 1997)
Note: Without good guess, no fit...

e acoustic depth: from where ?

1
<2Av>

e acoustic radius: ~ — 7

Results for different frequency ranges:

Red: / =0,1; Black: £ =10,2
Diamonds: TF results; error bars: fit results
Range: v € [0.8;1.24 0.1 x ¢] mHz

Extracted BCZ acoustic radius :~ 4060 s (£150 s)
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Conclusion

e This method is robust and easy to use

e We will be very happy to see the results obtained with
more refined methods.

e Our frequency sets are available...
Email: jballot@cea.fr

Acknowledgments: We would like to thank the VIRGO
group for giving the data.



Corot HH3, model star 1

HD 45067
T.; = 6050 £ 100 K 3.15 < My, < 3.4
[Fe/H] = —0.17 + 0.1 Vsini=6+4 km/s.

Conversion of My, into physical units (erg s—1)
Myl = 4.75 Lo = 3.844 x 1033,

Conversion of [Fe/H] into Z/X
[Fe/H] ~ [Z/X] with unknown error Z/X = (Z/X)g x 1012/
(Z/X)s = 0.0245 with at least a ten percent uncertainty.
0.0146 < Z/X < 0.0186

Input parameter ranges (E. Michel) — Frequencies production (M.J.
Goupil) — Time series production (T. Appourchaux) — Time series
analysis (R.A. Garcia, C. Barban) — seismic interpretation.



Evolutionary paths go through the

box in the HR diagram at different
stages of evolution.

010 020 024 027
M 1.080 1.230 1.150 1.090
Xo 0.70 0.70 0.71 0.71
Zo 0.00115 0.015 0.0115 0.0115
o 1.8 1.7 1.8 1.8
Qoo 0 0.2 0.2 0.2
diff no no no no

0.8 r

0.6 -

05 -

log L/L

04 -

0.3 -

0.2 -

0.1t
3.82

010

024 ——
07 -1

3.81

I I
3.80 3.79
log T,

|
3.78

J
3.77



Seismic modelling: the method
- Compute sequences with different choices of M, Xg, 4o,
a (mixing-length parameter), aoy (Overshooting parameter),
with/without diffusion ;
- on each sequence select the best model, which optimizes the
fit in the Av and dv space ;

AVl,n — Vin —Vin-1
OV p = Vip—Vi42n—1
/ —
OViy = 2V p—Vidln — Vidln—1

- accept or reject, try to improve.



The best fits were obtained for models on the end of the main se-
quence before or just at the beginning of the second gravitational
contraction.

For models with overshooting, §'v as function of v shows a slope in-
compatible with the observations. The given model star has

no overshooting or the overshooting parameter is clearly lower than
generally admitted values.

Good fits can be obtained for parameters in the following ranges
1.14 < M/Mg < 1.40
0.66 < X <0.72
0.0115< 75 <£0.019
1.7<a<1.8
NO overshooting or oy, <K 0.2
with /without diffusion



We illustrate with two rather different models

Best model of sequence 34

Best model of sequence 42

M/M, = 1.188

Xg=0.72
Zo = 0.012
a=1.7

gy = 0.05

reduced diffusion (0.25)
age = 4.37 Gyr

log T, = 3.7873

log L/Ls = 0.5202
(Z/X)gury = 0.0148

M/Mg = 1.225

Xg = 0.69
Zo = 0.018
a=1.8

no overshooting
with diffusion

age = 3.77 Gyr

l0og T,y = 3.7853
log L/Ls = 0.5225
(Z/X)Swf — 0.0174
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M/Mg = 1.188
Xo =0.72
Zo = 0.012

a=1.7

0y = 0.05

reduced diffusion (0.25)
age= 4.37 Gyr

10g Teff = 3.7873

log L/ L = 0.5200

X. = 0.05886

(Z] X )sury = 0.0148

R =1.1258310 x 10" ¢m

convective core without overshooting extension: r./R = 0.051619, m./M = 0.063324

Best model of sequence 034

convective core with overshooting extension: r,, /R = 0.053413, m,,/M = 0.068938

Frequencies in pHz

=0

(=1

=2

(=3

4.44251995E+02
5.16457519E+02
5.90273764E4-02
6.63941630E4-02
7.37240676 402
8.07975825E4-02
8.773042364-02
9.47312787E+-02
1.01918232E+03
1.09112358E+03
1.16234258 E+03
1.23313785E+03
1.30496497E+03
1.37774269E+03
1.45115987E+03
1.52444529E+03
1.59775380E+03
1.67095342E+03
1.74451607E+03

4.10804803E+02
4.74757867EA+02
5.47616157E4-02
6.21931711E+02
6.95732673E4-02
7.68258899E4-02
8.380958964-02
9.07520376E4-02
9.78426242E+02
1.05061635E+03
1.12228162E+03
1.19325398E+03
1.26444212FE+03
1.33683142E+03
1.41002185E+03
1.48357316E+03
1.55696361 E+03
1.63041468E+03
1.70393021 E+03

4.33914112E+02
5.07650984E4-02
5.82425774E4-02
6.56676100E4-02
6.95765321FE4-02
7.31143822E4-02
8.02180861E+-02
8.71672168E+-02
9.41678085E+-02
1.01356690E+03
1.08568060E+03
1.15707292E+03
1.22797894E+03
1.29985709E+03
1.37273994E+03
1.44630431E+03
1.51979295E+03
1.59330131E+03
1.66672703E+03
1.74051574E+03

4.58793445E+02
5.33904814E+02
6.09721557E4-02
6.84521244E+02
7.58120403E4-02
8.28637740E+02
8.52862299E4-02
8.98608474E+-02
9.69583104E4-02
1.04208026 E+03
1.11414288E+03
1.18547493E+03
1.25682379E+03
1.32938460E+03
1.40277876 E+03
1.47661810E+03
1.55026921 E+03
1.62399047E+03
1.69771647E+03




The following figure shows the ratios of dvy,p = vy — V1042 and Av, = vy — vy for
{ = 0 and different n.

0.09 T T T T T T T
data

model °

0.08 ° -

0.07 ]
o

0.06 | -

Ov/Av (uHZ)

0.05 -

0.04 - B
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v (uH2)
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CCODSM - DAPNIA

PSD :

e 4 different estimators have been
computed:

— Periodogram (FFT)

— Multitaper (4 Sine tapers)

— Zero Padded Periodogram (4 times)
— Averaged cross spectrum

14-15 May 2003 Rafael A. Garcia
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CCODSM - DAPNIA

Periodogram

HD 40087 HD 40087
L N I it & Lo Loe10%) Lo I Lo I Lo I
108 ] - |
} & 5 : ? : i
O A T A G B B T e A T e S A R T E T R i e
L‘Ua N 1L R O ; ; !
: I |
L ;
Hj‘l: S LR oo ety T '
: ‘ ‘ PR TR R ST ) (. SRR T Fe—
T o R R e e [ ‘“ || I I |
2| f ' R L '
10° | o W Pt TR R | ORRAL A VAN LA T Al
10 1on g [HUHE oot 10240 1010 10659 1080 11 11&0
Frequency (peHz) Frequeney {Hz)

« Background fitted with a 2 elements Harvey model
o 2 groups of modes are clearly identified
e The individual multiplets are not directly recognized

14-15 May 2003 Rafael A. Garcia



CCODSM - DAPNIA

Identifying the modes :

MM 4506% Aule Corer, 70 =3 1200

=OU0

1300

o IIIIIIIIgIII_l‘I;‘LI.-HHHHII—mg_IIIII

1l 14k} 154}

[
e

(M}

HU 45087 Aulo Uorr, L1200 =21700

1000

Frequency (Hz)

500

TTTT T T TR T

L34 Ben

i
o
=
— ; ! i : )
=3 f H 3 3 i

a 20 4 B0
Froyuone v (_IuI-]z.)

« Distance between the two left structures changing with frequency =>
» Different modes not a “changing” splitting

Amplitude ratio => doublet I=0-2 and |=1

 From the autocorrelation: Small and big differences
» Constructing guessing frequencies for the fit

14-15 May 2003 Rafael A. Garcia



CCODSM - DAPNIA

Fitting model

e Symmetric and asymmetric profiles used
* No systematic differences observed on the resultant frequencies

* Fitted parameters: Frequency, amplitude, Line-width

— First step:
 fitting only one lorentzian profile per mode
— The asymmetry takes into account the asymmetry of the whole mode
— Better determination of the central frequencies
— Second step:

» Using the new guessing table

— free splitting and different fixed amplitude ratios of the components of the
multiplets

— Fixed splitting to the most common value found (~800 nHz)

 This process has been repeated for the 4 Fourier estimators

14-15 May 2003 Rafael A. Garcia



Results :

=0

530.5170 0.13

600.1405 0.1227
667.6530 0.2413
734.4192 0.1332
802.8481 0.0893
872.3123 0.1149
942.6650 0.1042
1014.3876 0.1930
1086.3512 0.1376
1157.7844 0.2039
1227.9085 0.1812
1299.4447 0.2135
1371.8733 0.3462
1444.3102 0.3877
1517.4924 0.6915

0 0
0 0
0 0

765.3281 0.1320
833.1413 0.1070
902.5326 0.2750
973.8620 0.1706
1045.7911 0.1186
1117.3852 0.2129
1188.2857 0.4551
1258.9915 0.2774
1330.8657 0.2434
1403.4696 0.5409
1476.5164 0.6188
1549.8008 0.6593
1622.9331 0.6533
1696.2605 0.6527
1769.5830 0.6735

866.4656 0.1602
937.2448 0.0804
1009.1386 0.2244
1081.0989 0.2060
1152.3626 0.1874
1222.6506 0.2759
1294.3077 0.6501
1367.0392 0.2661
1439.2745 0.4578
1513.4282 0.7430

1181.6210
1252.1820
1324.2065

0 0
1468.8972

Resultant frequencies and Big difference

an

¥

£3

CCODSM - DAPNIA

* Candidate modes (not present in all the estimators)

14-15 May 2003
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Periodogram (1=0):
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Multitaper (1=0):
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Periodogram (I=1)

TR T : B Elnen
10-

m= ‘

—
——
I
s
=

u;Lw.mkWFm HrUl’.nA'M »\hlqh\(mhhn\hﬁ E;me“d.lﬂmlwﬂw | ‘F.lm_mlum

65 680 895 GO0 965 90 M0 965 W0 0 BB %45
N =y R 05721 n=15
: : E
o}
e
: 1
20 3
10k Uﬂ 3
ot l];ﬁ b ) r.ll !!|! " ﬂIIH W_, I!' )
1030 1035 (030 1045 1050 1036 0T 1105 G110 116 1120 11%

e 117 1181 1185 1180 L9 1241 1250 1295 126G 1365 12FD

L NS EaT;

| L
L | :
3P\Llu \JM\ LT lfl’l h [lL h ‘."-JL'J}NMMME

1315 33 1325 130 183 1340

L R T

1460 1460 M7 1473 1400 1450

5“% I=1 n=22
40;—

0t
02

; iLMMMM

1605 1610 1613 IB2D 1635 1635

14-15 May 2003 Rafael A. Garcia

L

BT

0 fm il JJ MkJ

AM Jlnw.mu;

133 1360 1305 1400 1406 1400

50;

I=1 n=21

a:

i
20k

\ ;iwfu,umJ,Mn.UU M‘ Wil

1259 130 18 1300 L350 1560

R |
I.MM TE u amL‘ka M‘NJMM

LG2  L1685 1800 1695 1700 IW0G



CCODSM - DAPNIA

Multitaper (I=1)
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CONCLUSIONS .

* Improving the algorithm for :
— Fully automatic research

— FInd a criteria to select the modes form the
different computed estimators

— When a fit falls:
e To reduce the number of free parameters
* Using general trends for Amplitude & Line-width

 How to determine the splitting????
 Is it a key parameter for the Stellar models??7??

14-15 May 2003 Rafael A. Garcia
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HD 49933

Sqrt(power spectrum) 150 days
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Vign = Vra (eHz)
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HD 49933 — Seismic Interpretation

ANWESH MAZUMDAR

Observatoire de Paris-Meudon, France

Collaborators: Jeremie Lochard, E. Michel and M-J. Goupil



Overviewl

We report on the seismic interpretation of the frequencies of the star

HD 49933.

Global Parameters of HD 49933

o T.4=6700+100 K

Mpor = 3.35 £0.10

[Fe/H] = —0.32 + 0.10

vsini = 10 4+ 4 km/s

Original model produced by lan Roxburgh
e Time series produced by Caroline Barban

e Frequencies extracted by Thierry Appourchaux



Before the Models |

Estimation of acoustic depths of base of CZ and Hell

ijonisation zone

Discontinuities in sound speed derivatives at the Hell ionisation zone and
the base of the convective envelope give rise to oscillations in the

frequencies.

We fit a function of the form

a1

52V(n,£) — (30 + + 822 ) sin(4 TVn¢TCZ T ¢CZ)

Vn,ﬁ Vn,f

+ 2) s|n(4 TVn ¢ THell + ¢He|l)
Une  Vhy

+ (bo +
to the second differences of the data, taking into account the errors

(Mazumdar & Antia 2001).



Before the Models |

Estimation of acoustic depths of base of CZ and Hell

ijonisation zone

50 T T T T
Data

Fitwitht_=1445s;1 = 664s
4.0 | .

T \ M

-30 .

oV (UHZ)

-4.0 1 1 1 1
10 15 2.0 25

v (MH2)

The fit provides us with values for the acoustic depths of

e the base of the convective envelope: 7oz = 1445 £ 68 s

e the Hell ionisation zone: 74,77 = 663 £ 49 s

These estimates help to search the closest model.



Stellar Modelsl

Evolutionary tracks were computed with CESAM using

e CEFF and OPAL equation of state

OPAL opacities
e NACRE nuclear reaction rates

e MLT convection

Eddington atmosphere

e No diffusion

Frequencies were computed with ADIPLS.



Stellar Modelsl

Variable parameters of models

e Core overshoot (in Hp) ; 0 — 02
e Mixing length (in Hp) ; : 16 — 1.8
e Metallicity ; : —0.42 — —0.22
e Initial Helium abundance : ;025 — 0.27

All CESAM models are computed with a “high” precision parameter to
avoid irregular features at convective zone boundaries

— more accurate models, but very time-consuming!!

e For a particular combination of these parameters we vary the mass of
the model to check for overlap between main sequence tracks and the

global parameters of HD 49933 on the HR diagram.

e Compare large and small separations of the “data” with the

computed values to find the closest possible model.



Nature of the DataI

Total of 79 frequencies : ({ =0:37,£=1:30,£=2:8,¢=3:4)
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Nature of the DataI

Small Separations

e Between / =0, 2 modes and ¢ =1, 3 modes:
do2 = [Vno — Vn—1,2]/6

dis = [Vp1 — Vp—13)/10

2 i | I I I I | I I I I I I I I I I I I | I I I I |
~ & d [ ] .
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Nature of the DataI

Small Separations

e Between / = 0, 1 modes:
- [Vhﬁ _'<VnJ'+'Vn—1J>/2]/2

dip = —[Vn1 + (Uno + Vnt10)/2]/2

" HD 49933

Small separations d,, and d,, (uHz)

N I 1 1 1

500 1000 1500 2000
Frequency v (uHz)

2500

3000



Approaching the closest modell

e Average value of large separation provides initial estimate of the

mean density of the model:
p/Po ~ 0.46

e Explore the sensitivity of different features of the large separations to

the six model parameters:
M, Age, Y, [Fe/H], doy,

e Fitted values of the 7¢7 and 7.7 provide strong indication.



Then (5)

Then ()

Approaching the closest modell
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Then (5)

Then ()

Approaching the closest model
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Then (8)

Then ()
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Approaching the closest modell

Small separations between £ = 0,1 modes in the data have unusually

small and even negative values!

Small separations between ¢ = 0,2 modes are hardly available in the

data.

Inability to match the small separations between £ = 0,1 modes with

any combination of parameters.

Several “best case” scenarios are identified, based on the large
separations alone and a comparison of the deviations of the models

from the data is made to select the closest model.



Closest ModeII

We have two close models for HD 49933.

3.0 T
: M/M, X, Y [Fe/H] d,, o -
- (1.23 0.485 027 -0.25 0.2 1.6) -
- (1.25 0505 027 -0.22 0.2 1.6)e -
3.2 =

//HD 49933
3.4 - / —

Mbol

8‘8 | | | | | | | | | | | | | | | | | | | | |
3.835 3.830 3.825 3.820 3.8156

log Teﬁ,




Closest ModeII

Model Parameters:

M/M = 1.23 o M/M, =125
X, =0.485 o X,=0.505
R/Ro = 1.383 e R/Ry = 1.390
Y =0.27 o Y =027
[Fe/H] = —0.25 o [Fe/H] = —0.22
doy = 0.20 o doy = 0.20
a=16 e a=16

Model values for

p/ps = 0.465 e p/po = 0.465
7oz = 1410 s o 7oz = 1438 s

THerl = 0693 s ® Ty 7 = 667 s
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Closest ModeII
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Conclusions

e We could obtain close match between the large separations in the

data and a model.

e The small separations of all models that we considered were much

higher than the values obtained from the data.

e Our model is likely to be a good approximation of the original model
in the outer layers, but lack of constraints from the small separations

prevents gaining information about the inner layers.

e The sensitivity of the 7oz and Ty.;r on the model parameters
provides good indication of what is to be changed from an initial trial

model.

e The unusual values of the small separations might be indicative of
misidentification of modes, or model inconsistencies in the inner

layers. Or,...

it is a goldmine of information!



Postscriptl

There might be misidentification of modes between / = 0 and 2.

In that case, dy; — —d21/2 and djp — —d12/2.
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HD49933

Teff = 6700 £ 100 K
Mbol = [3.25 ; 3.45]

[Fe/H] =-0.32 =0.1
Vsini=10=*x4 km/s

3.8325 < log Terr < 3.8195

0.52 log L/L_<0.6 ( with Mpo_ = 4.75)
0.009315< (Z/X) < 0.01476 (with (Z/X)_=0.0245)
0.00652 < Z < 0.01033 (ifX=0.70)

<
<

<AV n0>n>10 = 90.1765 (OM+TA)
<Av n0-n>10 — 90.1799 (TT)




Models

M X Z oV o diff
1.05-1.15 0.70 | 0.00652| 0.0/0.2 1.8 N
1.05-1.3 0.70 | 0.0082 | 0.0/0.2 1.8 N
1.1 - 1.25 0.70 {0.01033 | 0.0/0.2 1.8 N
1.15-1.3 0.736 {0.00857 | 0.0/0.2 1.8 N
1.35, 1.38 0.70 | 0.019 0.0/0.2 1.8 Y
1.5 0.70 | 0.03 0.0/0.2 1.8 Y




AVn, 0 = Vn,0 —Vn1,0

5\’0,2 — Vn,0 — Vn-1,2

OVo.1 =2 Vno— (Vo1 T Va-1.1)
6\’1,3 — Vn,1 — Vn-1,3

i

The best models fitting Av, ¢ arel
but they do not satisfy 2, 3, 4

Introducing diffusion, the constraints on
the model parameter would be | >

It appears that Ovo; decreases at high frequencies
if overshooting is included, and Ovo; decreases
at low frequencies if microscopic diffusion is

M:1.12-125M_
Z - 0.00652 —0.01033
X :0.70 — 0.736

Age: 2 — 3 Gyr.
Oov: 0.0 —-0.2
No Diff

M >135 M_
0.03 >7, >0.019
X :0.70

Age <1.Gyr.
Oy - 0.0-0.2
Diff
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Report of the Hare-and-Hound exercise #3 (HH3)
The case of HD57006

May 13, 2003

Abstract

In this report we present the analysis done to the synthetic spectra of H57006. For this evolved star,
we could not identify the modes and extract their frequencies and splittings with their formal errors in
the same way as for a solar like star. For this reason, this star revealed to be very difficult from the data
analysis point of view.

The Echelle diagram only permitted us to identify the I = 0 modes, but the fitting could reliably be
made only below 500uHz. The understanding of the high-order-mode behaviour was rather impossible;
we were restricted to the low order analysis.

For the study of long-lived modes, we had to devise a technique that could distinguish narrow peaks
(‘g-mode like’) among the wider modes (‘p-mode like’).

1 Introduction

In the context of the Hare-and-Hound exercises, HD57006 is one of the targets chosen to be studied in
terms of its seismology. It is a post main sequence star with about 1.6 M, an evolved star with a contracting
core. Because of that, it is very complex in terms of its frequencies, and rise some doubts about our ability
to identify the modes in such stars.

The oscillation frequencies are influenced by the sound speed, ¢, and the Brunt-Viiséla frequency, N
(Tassoul, 1980; Audard and Provost,1994). As both depend on the mean molecular weight, u, (hence on
the central hydrogen abundance, X.) they don’t change very much during the main sequence. However,
when the main sequence phase of stellar evolution ends, X, is exhausted and the star settles in a state in
which the hydrogen burns in a shell surrounding a helium core. The mass of the helium core is increased by
the hydrogen burning in the shell leading to an expansion of the envelope of the star. Such stellar interior
transformation strongly affects u, consequently the oscillation frequencies.

The modes are trapped in propagation zones, whose extension and location depends on variation of N
and on the Lamb frequency S; = Le/r, with L? = [(I 4+ 1). The propagation of p modes happens when the
mode frequency is greater than N and S;, while the propagation of g modes happens when the frequency
of the mode is smaller than N and S;. At the beginning of the evolution N is relatively small in stellar
interior and varies smoothly with radius, therefore there is a well-defined separation between the modes
whose eigenfunctions have nodes in acoustic propagation zone and those whose eigenfunctions have nodes in
the gravity propagation zone. As the evolution proceeds a strong gradient of chemical composition develops
at the convective core frontier, giving rise to a large peak in N close to the frontier changing the structure of
the mode propagation zones. As a result the eigenfunctions of g modes of low radial order develop nodes in
the acoustic propagation zone, while eigenfunctions of the low order p modes develop nodes inside the zone
of the peak of N. These modes have a mixed character, they behave as g modes close to the core frontier
and as a p modes in outer regions of the star (Dziembowski and Pamyatnykh, 1991; Audard, Provost and
Christensen-Dalsgaard, 1995).

In this report, we describe an attempt of identification of the modes and extraction of the frequencies of
a star that has the terrifying scenario of such mixed modes.



2 Data Analysis

One fundamental quantity in seismology is the large separation, Avgy. It represents nearly the uniform
separation between the two modes of same degree and successive order (Avy & v, — vp—1,) for p modes
of high radial order and low degree. The frequency of these modes can be described using an analytical
asymptotic way (Tassoul, 1980). The Ay is proportional to the characteristic frequency Q, = /GM/R3
therefore it can be a measure of the mean density of the star, and hence of its mass and radius if ¢ is known.
The Ay is also proportional to the inverse of the acoustic radius expressed in seconds.

Useful information can also be obtained from the small frequency separation that measures the departures
from the uniformity. It corresponds to the difference between two modes with same n + é and is defined
as dn,; = Vn,; — Vn—1,. This quantity is sensitive to conditions in the structure of the core and to chemical
composition and therefore can be an age indicator (Audard and Provost, 1994).

Another quantity that can be derived from the oscillation frequencies is the second frequency difference
doV = Up + 2Up_1, + Vp—2, that has an oscillatory behaviour. It is related with the rapid variation of the
adiabatic exponent due to the Hell ionization, therefore this quantity may provide a diagnostic to determine
the helium abundance (Audard and Provost, 1994).

2.1 Echelle Diagram

The method used to detect the large separation, Avy, is the Echelle diagram. The Echelle diagram consists
in cutting the spectrum into pieces of width Ay and pile them up atop of each other. If Ayy is the correct
one, “vertical” ridges will appear clearly in the diagram.

In the case of HD57006 “clearly” is not the best word to describe it. The distribution of the modes in
the Echelle diagram in the Figure 1 does not permit to take any conclusion about any ! but (=0, although
for high orders it starts to be messy.
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Figure 1: On the left hand side is the spectrum of the star HD57006, and on the right hand side the Echelle
diagram with Avy=30uHz.

Because of the oddness of the HD57006 Echelle diagram, additional theoretical information about this
star was necessary. Two sets of frequencies were provided by Ian Roxburgh and by Mério Monteiro with the
collaboration of Jodo Marques.

As one can see on Figure 2, [=1 in both sets of frequencies behaves almost chaotic. After the 15" order,
[ = 2 starts to have the familiar behaviour next to the I = 0 on the left hand side, as predicted by the
asymptotic theory. However if one looks again at the Echelle diagram in Figure 1, it is very hard, if not
impossible to recognize or to guess its location, therefore it wasn’t possible to fit it. We only fitted I = 0,
the results can be seen in Figure 3 and in Table 2.1.

Above 500uHz, since the [ = 0 and | = 2 modes are very close to each other and apparently very wide,
it is difficult to affirm that only [ = 0 is fitted, because it is possible that some [ = 2 were fitted with or
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Figure 2: The Echelle diagram of the set of frequency given by the two stellar models of the star HD57006.
[=0 is represented by a square, [=1 by a triangle, [=2 by an asterisk and /=3 by a plus sign.
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Figure 3: The result of the /=0 mode fitting. For high orders (n>15) the fit is rather erratic. Since the star
spectrum is very messy, at least after n>15, the /=2 modes are sufficiently close to that of the [=0 modes
(as it can be seen in the Echelle diagrams of the stellar models) for being mixed with the /=0 . It is possible
that some [ = 2 are among the fitted [=0.



instead of [ = 0. Therefore we only present in Table 2.1 the frequencies fitted for I = 0 below 580 uHz.

=0
159.1939140.038500000
189.08200+0.044807799
219.14301+£0.036794599
249.03085+0.013279705
279.10117+0.038500000
309.23514+0.099702701
338.49667+0.14239374
366.45700+0.17383800
396.97388+0.40610036
427.58200+0.28380781
459.62387+0.15837938
490.795014+0.81077600
522.04315£0.44192797
550.83026+£6.6242681
582.78986+£6.8992927e-06

Table 1: [ = 0 mode frequencies and their formal errors in yHz as determined by maximum likelihood
estimators. The errors determined for the frequency 582uHz seems to be way too low to be reliable, this
identified mode belongs to the high-order mess that can be observed in the echelle diagram. This is the
reason why we concentrated our attention on frequencies below 500uHz.

2.2 Mode identification challenge

The main goal in asteroseismology is to derive from the oscillation frequencies of the modes, the internal
structure and rotation of the stars. With [=0 only we can measure Avy, the information that can be derived
is the acoustic radius of the star. In order to know the internal structure and the rotational of HD57006 it
is necessary to extract the frequencies of the other modes.

For the high orders, n > 15, the spectrum seems too messy to be able to understand it and extract
useful information from it. The existence of large power narrow peaks spread along the lower part of the
Echelle diagram n < 15 can be noticed. These peaks may lead us to additional information about the
internal structure of the star. We believe that we may learn something from their frequency extraction. We
concentrated our attention to the frequency range below the 500 uHz.

Analyzing the power spectrum below 500 pHz, one can notice two distinct features:

e the isolated narrow peaks and
e a bunch of peaks close to each other.

Two bunches of peaks can be well noticed on the left hand side of the Echelle diagram (Figure 1) within
the 13t" and 15" orders. These two kind of features can not correspond to the same physics, since that
the isolated narrow peaks are probably modes which their energy fall only into one bin, therefore it can
correspond to long-lived modes, while the bunches of peaks may correspond just to one broad mode, and it
can correspond to short-lived modes.

To extract the frequencies of the isolated narrow peaks we need to assess whether they may be due to
noise. In some cases they can be embedded in the bunches of peaks that are supposed to be short-lived
modes. Therefore we also need to assess whether we can detect and distinguish them among the broad
modes.



2.2.1 Long-lived modes detection

Narrow peaks alone
If one considered a pure noise signal with a y? statistical distribution, the probability that the power
within one bin is greater than m times the mean of the noise power, o, is:

P(m) =™ (1)

For a frequency band containing N independent bins, the probability that there aren’t any bins with
power greater than m becomes:

Pn(m) = (1—e ™) (2)

Therefore the probability that at least one bin has a power greater than m becomes:

Pn(m)=1-(1—-e"™¥ (3)
then if e < 1 the equation (3) can be approximated to:

Pn(m) = Ne™™ (4)

Setting a given value for Py (m), for instance 10% (which means 10% probability that one bin above m
is due to the noise), choosing a window range in our spectrum which contains N bins, and estimating o, one
can derive using the equation (4) the correct value for m. This way, we can create a statistical test that
can detect the bins that can be considered as not being due to the noise (see also Appourchaux et al., 2000;
Gabriel et al.,2002).

Below 300 uHz there aren’t any broad modes and we applied the test directly to P(v) we filtered out the
bins corresponding to the identified [ = 0.

Narrow peaks embedded in short-lived modes

Above 300 uHz the peaks that we wanted to analyze are among broad modes. Therefore, to apply the
aforementionned test directly to the power spectrum is not very useful because it detects bins that are part
of a single broad mode, in this case we can not assume that the detected bins are all individual modes.
Furthermore in some cases the power peaks are very close to the broad modes, and is not possible to assume
reliably if they are sharp modes or if they are just part of the broad mode. We need to find a test that can
distinguish the broad modes from the sharp modes.

In order to solve this problem, we devised a technique that:

1. Fit the short-lived modes using MLE
2. Correct the spectrum for the fitted model
3. Apply the aforementionned test as if we had only narrow peaks

Step 1: Assuming that p modes are stochastically excited oscillator, one can derive that the power
spectrum of p modes oscillator is distributed around a mean Lorentzian profiles with a x? probability
distribution (Toutain and Frohlich, 1992; Appourchaux et al., 1998), therefore it is possible to apply a
statistical test. In our case we want to extract the frequency corresponding to the sharp peaks in the power
spectrum, within the frequency range below 500 yHZ, that have high probability not to be due to noise.
The power spectrum of the p modes can be described as:

Pv)=M@)F(v) ()

Where F(v) is a random function with a y? statistical distribution, and M (v) is the model of the fitted
mode made of a single Lorentzian profile plus noise.



Step 2: One can fit this model to the observed power spectra using the Maximum Likelihood Estimators
technique (Toutain and Appourchaux, 1994). If one divide the power spectrum by the fitted profile, let’s
call it M'(v), one obtain:

P(v)

P'(z/) = M) ~

F(v) (6)

In a first approximation P’(v) has a x? statistical distribution. This is an approximation because M'(v) is
derived from data and has also a statistical distribution that should be taken into account!. In this way we
solved the problem of the mixing between the the sharp modes and the broad modes.

Step 3: Applying the y? test to HD57006 spectrum, we set Py(m) = 10%, o = 1, and a window size
of 30 uHz (corresponding 389 bins). For each window we fitted the broad modes within using the MLE
technique and after divided the power spectrum by the resulted fitting we applied the statistical test. The
result can be seen in Figure 4.

405 410 415

390 395 400 405 410 415 420 425 430 435 440 445
frequency (uHz) frequency (uHz)

Figure 4: Result of the test for two different ranges of frequencies.The fitting is presented on the top of the
figure, and the division of the power spectrum by the fitting, as well as the bins above the 10% probability
level, are presented on the bottom of the figure.

The assumption that the g modes have long life-time implies that almost all of the energy from a single g
mode will fall in one bin or, at most, in two neighbouring bins (Gabriel et al., 2002). Therefore we assumed
that the sharp modes could be the g modes (and of course the broad modes are the p modes). The results
are in Tables 2 and 3, and the distribution of the modes frequencies in the Echelle diagram can be seen in
Figure 5.

non—{ =20
320.1954+0.256729
353.86040.246180
373.999+40.324451
409.970+0.225900
451.72541.45902
474.7974+0.512622

Table 2: Frequencies and their formal errors in gHz of the non-l = 0 modes as determined by the MLE
technique for the broad modes corresponding to the unidentified p modes below 500uHz.

IThis shall be the subject of a Monte-Carlo analysis
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Figure 5: The distribution of the modes in the Echelle diagram. The [ = 0 modes are presented as squares,
the g modes as asterisks, and the non-l = 0 modes as triangles.

g modes
226.08025 236.18827 237.19136 252.39198 253.85802 255.09259 259.25926
260.49383 265.58642 268.59568 276.62037 27831790 279.78395 281.09568
282.25309 282.40741 285.87963 287.65432 289.19753 290.66358 296.68210
301.69751 303.39504 311.11109 315.81788 318.20986 332.25308 345.75616
347.53085 363.11728 364.27469 371.68210 377.00617 400.54011 402.31481
433.71914  435.49383

Table 3: Frequencies of the g modes extracted using the statistical test described in the subsection 2.2.1



2.2.2 Autocorrelation and correlation

The correlation determines the degree of similarity between two signals. If the signals are identical, then the
correlation coefficient is 1 (or -1); if they are totally different, the correlation coefficient is small and close to
0.

The Autocorrelation is a method which is frequently used for the extraction of the fundamental frequency,
in this context this is the [ = 0 ridge. If a copy of the same signal is shifted, the distance between the central
peak (corresponding to the non shifted) and the next correlation maximum is taken to be the fundamental
frequency, in this case that this the large separation (Figure 6, left). Having this in mind, this can be applied
to the extracted frequencies in order to check if there is some hidden pattern, or some kind of periodicity
which is not very clearly to human eye.

We determined the autocorrelation of the extracted frequencies corresponding to the g modes plus those
corresponding to the non—! = 0 p modes (Figure 6, right). We didn’t find out a clear evidence for the
existence of a correlation as we can find for the autocorrelation of the extracted frequencies of I = 0 modes
alone.

Assuming that the shapes of I = 0 and [ = 1 in Echelle diagram might be very similar, we correlated the
[ = 0 frequencies with the frequencies of g modes plus non-I = 0 p modes to check if one can find a repetition
of the [ = 0 ridge (Figure 7). However, once more we didn’t clearly find any evidence for that.

Autocorrelation of the 1=0 modes (only) Autocorrelation of the g modes + non-1=0 p modes
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Figure 6: On the left hand side, we have the autocorrelation of the extracted frequencies corresponding the
[ = 0 modes; we can see a fundamental frequency corresponding to the large separation. On the right hand
side, the correlation between the frequencies corresponding to the g modes plus the frequencies corresponding
to the unidentified p modes; we can not see any fundamental frequency.

3 Conclusion

High-order low-degree p modes of the HD57006 do not behave in the same way as one could predict from
the asymptotic theory for solar-like stars in the main sequence. Looking at the Echelle diagram, we cannot
see the “vertical” ridges corresponding to [ = 0,2 and [ = 1, 3, therefore it is not possible to determine the
dn, and dyv, hence is not possible to deduce the internal structure of the star.

If one focus our attention to the low orders, the HD57006 power spectrum seems to be able to provide
more information about the star; we can identify clearly the [ = 0 modes that can be fitted without major
difficulties. One can also notice the presence of sharp modes that can possibly correspond to g modes or p
modes with mixed character, since in this phase of evolution both type of modes have a larger propagation
zone close to the convective core frontier due to the Brunt-vaisila frequency peak.

For the extraction of the frequencies of the sharp modes we devised a technique that can distinguish
them from the broad modes. This technique can also be applied to stars where the mixed modes character
exists but not so strong as in HD57006.



Correlation between 1=0 modes and g modes+non—1=0 p modes
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Figure 7: Correlation between the identified [ = 0 p modes and the unidentified p modes plus the g modes.
If one confine our attention to the interval [-30uHz,+30uHz] we can see four maximums but they are not
sufficient prominents to affirm that there is a clearly repetition of the [ = 0 shape.

Last but not least, we were not able to identify any rotational splittings from the non-I = 0 modes.
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Characteristics of input model HD57006
Structure and frequencies

G. Berthomieu

Global constraints on the input model (E. Michel)
Terr=6150+£100 = 3.7817 < log(Tess) < 3.7959
1.85 < Mbol < 2.2
[Fe/H] = —0.1 £ 0.1
With Mbolg= 4.75 and (Z/X), = 0.0245

1.02 < log(L/Ls) < 1.16
0.01548 < Z/X < 0.0245

Rotation

Vsini =18 £ 3km/s

If we take i = 45° and a mean radius 2.210'! then

Vpot =~ (1.825 £ 0.3)uH Z



Input model of HD57006

Properties of the input model:

M /Msol= 1.65
R/Rsol= 3.19

L /Lsol= 13.10
log(L/Lsol)= 1.1174
Age (My ) = 1861.64
Teff= 6.15576 103

Zs =0.016

X = 0.8004

Y, =0.184
Zs/ X, =0.01998

X. = 0.000
T. = 2.39403107
z,. = 0.879

a=1.6
overshoot ¢ = 0.05



Comparison of HD57006 frequencies

Frequencies extracted by T. Appourchaux from temporal series computed
by T. Toutain:

15 frequencies 1=0 from 159 to 582 pHz
6 frequencies “non 1=0" from 320 to 475 puHz
37 frequencies “gmodes” located to within 1 bin=0.077

1=0 pmodes (v o) non 1=0 pmodes (v o)

159.193
189.082
219.143
249.030
279.101
309.235
338.496
366.457
396.974
427.582
459.623
490.795
522.043
550.830
582.790

0.039 320.195 0.256
0.045 353.860 0.246
0.037 373.999 0.324
0.013 409.970 0.226
0.038 451.725 1.459
0.099 474.797 0.512
0.142
0.174
0.406
0.284
0.158
0.811
0.442
6.624
6.9e-06

gmodes (located to within 1 bin=0.077)

226.080 236.188 237.191 252.391 253.858 255.092 259.259 260.493
265.586 268.595 276.620 278.318 279.783 281.095 282.253 282.407
285.879 287.654 289.197 290.663 296.682 301.697 303.395 311.111
315.817 318.209 332.253 345.756 347.530 363.117 364.274 371.682
377.006 400.540 402.315 433.719 435.494



Comparison of HD57006 frequencies

Modes 1=0

HD57006 Frequency differences ( Model(I=0,1,2,3) — ThA (1=0) )
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Comparison of HD57006 frequencies

Modes not =0

HD57006 Frequency differences ( Model(1=0,1,2,3) — ThA (I=1) )
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Comparison of HD57006 frequencies

Modes “g”

HD57006 Smallest frequency differences ( Model(I=0,1,2,3) — ThA (modes "g") )
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1 INTRODUCTION

ABSTRACT

The mode identification and fitting of solar oscillations provide an observational tool
to derive the physical properties of the Sun’s interior. What has been devised for helio-
seismology can now be used for the future asteroseismology ground-based instruments
and space missions such as HARPS or COROT. In the coming decade, numerous
stars will be observed for which new tools will be needed. For instance, it is very likely
that g modes and p modes will be detected rendering the identification difficult. In
addition, modes having both characteristics, known as mixed modes, are also likely
to be detected in evolved stars; these latter modes are crucial for the understanding
of the internal structure of the stars as they propagate deeply inside the stars, unlike
the p modes. Unfortunately, the mixing will not only occur physically but also in
the frequency domain: mixed modes will appear very close to stochastically excited p
modes. In this paper, we have devised a new technique for detecting long-lived modes
(mixed or g modes) embedded in a common p-mode spectrum. The technique has been
validated using Monte-Carlo simulations. In the framework of the hare-and-hound ex-
ercise of Corot, this technique has been applied to synthetic time series of the evolved
solar-like star HD57006. The results showed that we can detect most of the mixed
modes embedded by the hare. We also discuss the impact of how the long-lived modes
are excited on the detection level. The technique described here can be applied to
stars with a mass greater than 1.2 Mg having evolved possibly beyond the Terminal
Age Main Sequence (TAMS) such as Procyon.

Key words: Stars: oscillation — Methods: statistical

Turck-Chieze et al., 2004). Although, the detection of the
g modes has not been successful, space missions such as

P-mode spectra have been used for more than two decades
to study the internal structure of the Sun in great details.
However, because the major contribution to the p modes is
in the outer layers of the Sun and only the I = 0 modes reach
the core, the inversion techniques based on p-mode frequen-
cies require great accuracy to determine the core structure.
In contrast to the p modes, the g modes are confined in
the radiative zone and have an energy maximum located
near the center of the Sun. Therefore, the inversions of so-
lar structure using g-mode frequencies do not require such
a high frequency precision.

Seeking for g modes in solar data has always been the
challenge of helioseismology. Statistical methods and pat-
tern recognition techniques have been used aiming to detect
g modes in the data collected by SOHO and ground-based
instrument (Appourchaux et al., 2000; Gabriel et al., 2002;

© 2004 RAS

MOST and COROT will provide us, in the near future,
with measurements of light fluctuations from other stars
with enough precision to detect and identify modes of os-
cillation of any kind, p and g modes alike; similarly, the
ground-based spectrometer HARPS will measure stellar ra-
dial velocities providing in the long term a larger astero-
seismic database than the aforementioned exploratory space
missions. Besides the g modes, there are other type of modes
called mired modes that may provide the information nec-
essary to understand the structure of stellar cores. These
modes occurring in evolved stars have the dual characteris-
tics of a p mode in the convective part of the star, and of
a g mode in the inside of the star. These modes may effec-
tively be excited by convection to such level that they can
be more easily detected at the surface of the star than any g
mode would be. Given their mixed nature, they would per-
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mit a much better understanding of the inside of the stars
than with the p modes alone. The impressive spectrometer
HARPS with its very low noise (Mayor et al., 2003) will
undoubtedly be subject to the observation of such evolved
stars. One or two detected mixed modes in well chosen stars
by HARPS would be enough for providing important infor-
mation on the internal structure of those stars.

The observation of such an evolved star as a princi-
pal target was envisaged for the COROT mission. Aiming
to prepare for the future space mission COROT, the Data
Analysis Team of the Seismology Working Group of COROT
has been performing Hare-and-Hound (H&H) exercises for
simulating the observation of those targets (Berthomieu
and Appourchaux, 2002). These kinds of exercises have two
steps. In the first step a team (the hares) generates the-
oretical mode frequencies and synthetic time series of the
light curve. In the second step another team (the hounds)
analyzes the time series, performs first, the mode identifi-
cation, i.e. the tagging of each mode in term of the degree
of the spherical harmonics; second, the determination of the
oscillation mode parameters (such as frequency, amplitude,
linewidth) and last the frequencies inversion. The work of
the hounds is performed without having access to any other
information but the known characteristics of the star. The
knowledge achieved on the identification, tagging, peak fit-
ting and inversions of the eigenmodes of the Sun is a great
aid for performing the same tasks on solar-like stars.’

In the framework of the H&H exercise, a time series
of the star HD57006 was generated by one of the authors
(TT) with frequencies provided by another author (GB)
and the modes identification and fitting by the other two
authors (OM and TA). The star HD57006 has been pre-
sented (Appourchaux et al., 2003) as an evolved star with
1.6 M) which has mixed modes of oscillation. It is known
that during its evolution from the Zero Age Main Sequence,
the oscillation spectrum of HD57006 will become more and
more different from a well-behaved solar-like star. For in-
stance, the echelle diagram of the oscillation spectrum will
be progressively scrambled until only the I = 0 ridge can
be identified (Appourchaux et al., 2003). Besides the prob-
lems related to that complexity, this time series also had,
below 500 pHz, prominent peaks that correspond to long-
lived modes amongst the short-lived p-mode spectrum.

In this paper, we will briefly recall the statistical tests
used in the detection techniques of long-lived modes or g
modes (Appourchaux et al. 2000, and Gabriel et al. 2002).
Next we will introduce a technique for detecting these long-
lived modes when they are embedded in short-lived modes.
The validation of the new detection technique will be done
through a Monte-Carlo analysis and through an evalua-
tion of the result on the synthetic time series of HD57006
(COROT H&H).

2 LONG-LIVED MODES DETECTION
2.1 Detection of long-lived modes alone

A signal that has no detectable intrinsic width in the power
spectrum (such as a pure sine wave or a mode with a lifetime

1 type of stars as defined by Appourchaux (2003)

longer than the observation duration) can be detected in a
white noise signal by testing the following hypotheses:

HO: A prominent observed peak within the power spec-
trum might be merely due to noise (pure noise observed)

H1: A sine wave signal embedded in white noise might
be detectable above a given significance power level (pure
noise observed with a deterministic signal)

The statistical test based on the HO hypothesis consists
in determining a significance level for which the peaks
have a low probability of being due to noise. It is assumed
that all bins in the power spectrum are independent
and identically distributed (i.i.d) random variables. The
HO hypothesis does not check for the presence of signal,
this is the ‘role’ of the H1 hypothesis. The test based
on the H1 hypothesis gives the probability that a sine
wave of a given deterministic amplitude can be detected
reaching a pre-determined significance level in the power
spectrum. It i1s applicable when the characteristics of the
embedded sine wave are known. These two kinds of tests do
not contradict each other but test two different assumptions.

2.1.1 Statistics of pure noise

The power spectrum of a pure noise signal made from full-
disk integrated instrument has a y? statistical distribution
with 2 d.o.f (Appourchaux et al., 1998). If z,(v) and y;(v)
are normalized normal distributions, representing respec-
tively the real and the imaginary part of the noise Fourier
spectrum at frequency v, then the power spectrum can be
described as:

P(v) = 27 (v) +y; (v) (1)

Which means if z = 22 + y2 is an observed value in the
power spectrum then its probability distribution G is given

by:
G(z)=1—e"7/? (2)

If we normalize with respect to the mean value of z, that is
2, we have for the normalized power spectrum p:

Gp)=1—¢€"" (3)

Thus for a set of N observed values of random variables
having a distribution similar to z, the joint distribution is
given by:

Grn(p)=(1—e")" (4)

This leads to the following statement:

Statement 1. For a frequency range containing N power
bins the probability that at least one bin has power greater
than p times the mean of the notse power is given by:

Pr(power> p) & Ne™”, when e ™ < 1 (5)
Equation (5) allows us to determine a significance level
(value of p) when Py is small. The very same equation was

used by Appourchaux et al (2000) to provide an upper limit
to the amplitudes of solar g modes.

© 2004 RAS, MNRAS 000, 1-10



2.1.2 Statistics of a sine wave embedded in a noise

In this part, it is required to assume that the signal is
present. Assumptions are made about how the signal inter-
acts with the noise: either through additive noise or through
multiplicative noise. Each assumption comes with a different
probability that we will calculate.

Case of additive noise: The power spectrum of a
pure sine wave embedded in noise is defined as the sum of
the Fourier spectrum components of the noise and of the
deterministic signal of amplitude A and frequency vg, The
power spectrum is described as:

<xr(l/0) + §)2 + y?(l’o) , V=10
Ple) = (6)

() + ¥ (v) v # 1

Here the detail of the phase of the sine wave has been dis-
carded because we are only interested in the power spec-
trum. Would the phase of the signal be different from zero,
it would still be possible by a linear transformation to have
the case of Equation 6. At v = vy the power spectrum has
no longer a y? statistics with 2 d.o.f. Instead it has a non-
central x? statistical distribution. Thus, if z = (z + §)2 +?
is the observed value in power spectrum at v = 1o then it
can be derived that its probability distribution, as reported
by Gabriel et al. (2002), is given by:

F(p, A —AVE 2 0) 4gdu (7)

where p is the normalized power spectrum, § and u are
dummy variables. From Eq. (6), it can be derived that the
signal to noise ratio r is given by:

1A A

7 = — (8)
T 24 8

We can rewrite Eq. (7) as:

F(p,r) = / / (n=2v7VEcos 6) 4 (9)
27
It is clear that when A = 0 the Eq. (9) is equal to Eq. (3).
Statement 2. The probability that a sine wave with a
determenistic amplitude A, having a signal-to-noise ratio r
in the power spectrum (r = A?/8), will have an observed
power higher than a power level, p, is given by:

Pa(power > p) =1—F(p,r) (10)

Case of multiplicative noise: In this case instead
of adding the noise, the signal is not deterministic but its
amplitude 1s defined by the local noise. The power spectrum
is described as:

) = (Hégmmfﬂmm v =1 -

:L‘i(l/) + y,2(1/) ,VE1

Since it is also a regular x? with 2 d.o.f, the probability
distribution is then derived from Eq. 2, and given by:

H(p, A) = G(p/(r + 1)) (12)
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where p is the normalized power spectrum. From Eq. (11),
it can be derived that the signal to noise ratio r is given by:

A2
r=" (13)
The definition of the signal-to-noise ratio is different from
that of the previous because the noise is multiplicative and
not additive.

Statement 3. The probability that a sine wave with a
mean amplitude A, having a signal-to-noise ratio r in the
power spectrum (r = A?/4), will have an observed power
higher than a power level, p, is given by:

Pa(power > p) =1—-G(p/(r+1)) = e/ rt1) (14)

2.2 Detection of long-lived modes embedded in
short-lived modes

The detection of pure sine waves embedded in a spectrum
of stochastically excited p modes can be done by testing the
same hypotheses. Using the following technique we can re-
duce this particular case to the case of a sine wave embedded
in a noise with x? distribution:

(i) Fit the p modes spectrum
(ii) Divide the power spectrum by the fitted model
(i) Apply the statistical tests described in section 2.1

2.2.1 Statistics of a p-mode spectrum

The power spectrum of a stochastically excited p mode can

be described as:
Pv) = M(v)X(v) (15)

Where X(v) is a random function with a x* statisti-
cal distribution with 2 d.o.f, and M(v) is the model of the
fitted mode made of a single Lorentzian profile plus stellar
and instrumental noise (Anderson et al., 1990). One can fit
a Lorentz profile to the observed power spectrum using the
Maximum Likelihood Estimators (MLE) technique (Toutain
and Appourchaux, 1994). This is a classic and well-known
approach used for the short-lived modes such as those ob-
served on the Sun. After having done the fitting, one can
divide the power spectrum by the fitted profile M(l/):

~ X(v) (16)

Here we would like to point out that we do not remove the
mode by performing this ratio. Since we deal with random
variable and with a finite amount of information, the fitted
profile will never be identical to the true profile. Therefore,
the so-called removal will be imperfect and subject to the
realization noise itself. Knowing this limitation, in a first
approximation )~((1/) has also a x? statistical distribution
with 2 d.o.f. Thus the statement 1 is applicable to )~((1/)7 it
is possible to apply the HO statistical test to the corrected
X spectrum.

2.2.2  Statistics of a sine wave embedded in a p-mode
spectrum

As before two cases are studied here.
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Case of additive noise: It can be derived that the
power spectrum of a sine wave embedded in a p-mode
spectrum can be described as:

M (o) ((l‘r(llo) + %)2 + y?(llo)) LU =1p
Plv) = (17)

M(v) (#7(v) + i (v) )V F 0

_ A
Where a = —\/m

Dividing Eq. (17), when v = vg, by M(llo) becomes:

X@@=%%%(@mm+gf+ﬁm0 (15)

Thus )~((1/0) can also be approximated to a non-central
x? statistical distribution. It is then possible to apply the H1
statistical test to the corrected power spectrum and to use
the detection probability expression presented in the State-
ment 2.

Case of multiplicative noise: In this case, we have:

M) (14 5) (r0)* + 42 00)) v =1

P(v) = (19)

M(v) («3(v) + ¥i (v)) v # 1

_ A
Where a = —\/m

Dividing Eq. (19), when v = vg, by M(llo) becomes:

- (1 + %) (2r(v0) + i (0)) (20)

Thus X(llo) can also be approximated to a y? statistical
distribution. It is then possible to apply the H1 statistical
test to the corrected power spectrum and to use the detec-
tion probability expression presented in the Statement 3.

3 VALIDATION OF THE DETECTION
TECHNIQUE

3.1 Monte-Carlo Analysis

As mentioned in the previous section, because of the realiza-
tion noise, the fitted profile (j((l/)) is derived from data and
does not reflect the true profile. Therefore the fitted profile
has also a statistical distribution that should be taken into
account in the application of the H1 statistical test. There-
fore we decided to use Monte-Carlo simulations for asserting
the following:

1. The statistical distribution of the corrected power
spectrum (X(l/)) is close to a x> with 2 d.o.f distribution.

2. The statistical distribution of an embedded sine wave
signal in the corrected power spectrum is close to a non-
central y? statistical distribution with non-centrality param-
eter “4—2 (Statement 2 can be applied).

In order to test our approximations and the H1 hy-
pothesis, we performed a Monte-Carlo analysis of the two

40

30

20

Power (ppm?)

10

0 |
0 5 10 15 20 25
Frequency (unHz)

Figure 1. An example of a Monte-Carlo simulation of sine waves
embedded in a white noise. The signal due to the embedded sine
waves Is present at v = 13.5,15,16.5 (uHz). The input signal-
to-noise ratios for the sine waves signal were 9, 10, 11, which
correspond to a theoretical detection probability of 60%, 70%,
76%, respectively.

aforementioned cases. We generated synthetic power spec-
tra with a frequency resolution of 0.077uHz equivalent to
an observation time length of 150 days. For both cases, we
wanted to compare the analytical formula given by Eq. (10)
with the detection levels as returned by the Monte-Carlo
analysis.

The Monte-Carlo simulations were only performed for
additive noise since multiplicative noise is always the under-
lying assumptions when fitting p-mode spectra. Equation 14
is implicitly assumed to be correct due our experience in he-
lioseismology.

8.1.1 Sine waves embedded in a noise signal

We repeated for 1000 simulations the following steps for a
30-uHz frequency range or window:

(i) Generate Fourier spectra for white noise

(ii) Add in the spectra three sine waves with different
amplitudes as in Eq. (6)

(i) Use MLE to estimate the mean value of the signal, &

(iv) Determine the power level: 10% probability in a 30-
pHz gives p = 8.26 (Eq. 5)

(v) Frequency determination of the detected power bins

The power spectrum of one simulation is shown on Fig 1.
After performing the simulations, we studied the distribu-
tion of the extracted frequencies. We counted the number
of times that we detect each input sine waves signal and we
compared the result with the predicted detection probability
given by Eq. (9).

The significance level (Eq. 5) depends on a proper es-
timation of the mean value of the noise. The implicit hy-
potheses that the set of power bins to be tested should be
ii.d random variables (See Section 2.1.1) does not hold in
the presence of sine waves signal (Eq. 6). The mean value of
a non-central y? distribution with a non-centrality parame-
ter A is given by A + o , where o is the mean value of the
central x? distribution. In this context ¢ corresponds to the

© 2004 RAS, MNRAS 000, 1-10



Flat noise, mean=1.000, sigma=1.080, chi 2 dof=2
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Long-lived mode detection 5
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Figure 2. On the left hand side: statistical distribution of the simulation shown in Fig. 1. The statistical distribution of the power
spectrum follows a x2? with 2 d.o.f statistics. On the right hand side: the solid line represents the detection probability as a function of

the signal-to-noise ratio given by Eq. (10); the detection likelihood as given by Monte-Carlo simulations are represented for one embedded

sine wave (dashed lines), and for three embedded sine waves (squares, triangles and diamonds signs).

mean value of the noise signal, and A corresponds to the ob-
served amplitude in the power spectrum that the sine wave
would have had if not embedded in the noise, i.e. ATQ. This
means that the inclusion in the signal data set of power bins
with such statistical distribution will produce an overesti-
mation of the mean value of the noise (See Appendix A). To
avoid this problem, we first applied the statistical test HO
(Step 4) for the detection of outliers in the data set and then
we re-estimated the mean value of the signal excluding the
detected outliers. The value estimated with this additional
step provided a less biased estimate of the true mean than
even using the median. As there are 3 embedded signals, if
the outliers were not excluded from the noise estimation, the
measured detection probability would be biased.

Figure 2 summarizes the statistical analysis of the
power spectra simulation of sine waves embedded in a white
noise showing the agreement between the Eq. (10) and the
Monte-Carlo analysis. The similarity between statistical dis-
tributions can be measured by the Kolmogorov-Smirnov (K-
S) test. It computes the significance level (k) of the maxi-
mum absolute difference between two cumulative distribu-
tion functions. The computed k has values between 0 (the
smallest value of agreement), and 1 (the largest value of
agreement) (see Press et al. 1988). Figure 2 shows that k
is close to 1 implying that the statistical distribution of the
power spectrum follows a y? with 2 d.o.f.

8.1.2  Sine waves embedded in a p-mode spectrum

Here we explicitly assumed that the noise was only additive
as it was the main assumption for the H&H exercise. We
repeated for 1000 simulations the following steps for a 30-
pHz frequency range or window:

(i) Generate Fourier spectra for white noise

(ii) Generate a model of two short-lived p modes
(linewidth: 1 pHz, 20 uHz apart, signal-to-noise: 12)

(i) Add in the spectra three sine waves with different
amplitudes as in Eq. (17)

®© 2004 RAS, MNRAS 000, 1-10

(iv) Use MLE for fitting the two p modes, and then divide
the spectrum by the fit

(v) Determination for the power level: 10% probability in
a 30-uHz window gives p = 8.26 (Eq. (5))

(vi) Frequency extraction of the detected power bins

For each simulation we applied the technique described in
Section 2.2 (Step 4) and then followed the same procedure as
for the sine waves embedded in pure noise described in the
previous section (3.1.1). One example of the generated power
spectrum and the respective corrected power spectrum are
showed in Fig. 3.

The agreement between the Eq.(9) and the detection
ratios of the input embedded sine waves signal in the 1000
simulations proves the second approach (Fig.4).

3.2 Hare-and-Hound exercises of COROT:
HD57006

3.2.1 The hares

A model of the star HD57006 has been computed with the
CESAM code. Tt is a 1.65 M) model with a surface metallic-
ity and a position in the HR diagram in agreement with the
observations. A set of adiabatic eigenfrequencies and their
normalized inertia for degrees | = 0 to 3 have been com-
puted by one of the author (GB). Since the star has evolved
beyond the main sequence stage, the frequency spectrum in-
cludes both p, g and mixed modes in the same frequency do-
main (Appourchaux et al, 2003). The time series of HD57006
was then generated by another author (TT) using the model
frequencies computed by GB. The length of the time series
was 150 days with a 32-s sampling time. The background
noise was derived from the solar noise as measured by the
SPM instrument aboard the SOHO spacecraft (Frohlich et
al. 1997). The linewidth of the p modes was of the order of
1 puHz, while that of the g modes was assumed to be much
longer than the observation time. The g modes and mixed
modes were introduced as sine waves being excited randomly
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Figure 3. On the left hand side: one example of a Monte-Carlo simulation of a sine wave embedded in a p mode. The signal due to
the embedded sine waves is present at v = 7.5,9,10.5 (uHz). The solid line corresponds to the fitted model using the MLE. On the
right hand side: The corrected power spectrum and the 10% detection threshold. Two modes are detected above the threshold indicated
by star symbols. The signal-to-noise ratios of the sine waves signal in the corrected power spectrum were input to be 9, 10, 11, which

correspond to a detection probability of 60%, 70%, 76%, respectively.

Corrected spectrum, mean=1.000, sigma=1.267, chi 2 dof=2
LT L e e e R A A e A R B

Kol.=0.910 4

Number of points
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Detection probability
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Figure 4. On the left hand side: Statistical distribution of the corrected power spectrum for the simulation showed in Fig.3. On the
right hand side: the solid line represents the detection probability as a function of the signal-to-noise ratio given by Eq.10; the detection
likelihood as given by Monte-Carlo simulations are represented for one embedded sine wave (dashed lines), and for three embedded sine

waves (squares, triangles and diamonds signs).

at a given frequency (restricted to one frequency bin) and a
given amplitude. This random excitation is believed to be at
work in the Sun. For instance, it is well known that due to
random excitation an [ = 1 doublet may appear like a sin-
glet as observed with SOI/MDI? for the [ = 1 mode at 1329
pHz. This feature is attributed to the stochastic excitation
of that mode.

2 Solar Oscillations Investigation/Michelson Doppler Imager
aboard SOHO

3.2.2 The hounds

The first step in the analysis of the time series is to com-
pute a power spectrum (Fig 5, left hand side), and then
to construct an echelle diagram (Fig 5, right hand side).
Echelle diagrams are used for easing the mode identifica-
tion as shown by Appourchaux (2003). One single ridge can
clearly be identified as being that of the I = 0. The method-
ology described in section 3.1.2 was applied to 30-uHz win-
dows between 200 and 500 pHz. Figure 6 shows two exam-
ples allowing to retrieve 4 long-lived modes.

© 2004 RAS, MNRAS 000, 1-10
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vin puHz  Degreel  Azimuthal order m  np —ng  Measured snr Theoretical snr Detection probability
226.08 1 0 -6 9.8 13.9 0.55
236.19 1 -1 -5 10.2 6.7 0.29
237.19 1 0 -5 16.8 11.9 0.50
252.39 1 -1 0 9.8 19.6 0.66
253.86 1 0 0 15.9 26.5 0.73
255.09 3 +1 -19 11.4 7.1 0.31
259.26 1 -1 -3 9.7 12.8 0.52
260.49 1 0 -3 12.2 24.1 0.71
265.59 2 -1 -10 13.0 3.8 0.11
268.60 2 +1 -10 7.5 5.3 0.21
276.62 2 +1 -9 371 19.9 0.66
278.32 2 +2 -9 7.3 6.1 0.26
279.78 1 -1 +2 41.0 22.9 0.70
281.10 1 0 +2 55.0 26.8 0.73
282.25 1 +1 +2 15.4 9.0 0.40
282.41 3 -1 -15 15.4 9.4 0.41
285.88 3 +1 -15 21.0 18.9 0.65
287.65 3 +2 -15 11.5 20.4 0.67
289.20 1 0 -1 36.9 60.7 0.87
290.66 1 +1 -1 35.5 40.7 0.81
296.68 2 -1 -7 7.3 10.7 0.45
301.70 2 -2 -6 7.8 6.7 0.29
303.40 2 -1 -6 9.7 12.5 0.52
311.11 3 -2 -11 22.8 6.6 0.29
315.82 2 -1 -5 7.9 13.4 0.54
318.21 3 +2 -11 11.1 18.6 0.64
332.25 2 -1 -4 14.4 9.7 0.43
345.76 3 +1 -8 14.2 19.5 0.65
347.53 3 +2 -8 7.3 24.1 0.71
363.12 2 -1 -1 8.1 18.5 0.64
364.27 2 +1 -2 29.7 12.5 0.52
371.68 3 -1 -6 14.2 7.6 0.34
377.01 3 +2 -6 33.2 13.0 0.53
400.54 3 -2 -3 10.4 13.5 0.54
402.31 3 -1 -3 8.0 23.4 0.70
433.72 3 -1 -1 20.2 4.9 0.19
435.49 3 0 -1 8.6 3.1 0.07

Table 1. Frequencies of the modes extracted using the statistical test described in the section 2.2. The identification in terms of {,m and
np — ng was performed a posteriori. The measured signal-to-noise ratio (snr) can be compared to that of the theoretical. The detection

probability is computed after Eq. (20) using the theoretical snr.

8.2.8 Post-exercise analysis

The advantage of the H&H exercise is the possibility of un-
derstanding what was simulated and how it was simulated.
This is clearly not possible with real stars. Figures 7 shows
the difference of frequencies, and the ratio of the measured
amplitudes to the theoretical ones. The measured mode fre-
quencies are measured with an uncertainty commensurate
with the frequency resolution. The distribution of the am-
plitude ratio are due to the stochastic nature of the excita-
tion, as deduced a posteriori. Table 1 summarizes the narrow
modes detected by our method together with the a poste-
riort mode identification, and the measured and theoreti-
cal signal-to-noise ratio. One of the author (TT) provided
us (TA and OM) with the theoretical signal-to-noise ratio.
The number of detectable modes is simply the sum of the
probability of detecting the narrow peaks as computed ac-
cording to Eq. (10) (See Appendix B). The total number of
detectable modes was 77 £ 9. This is higher by 4 ¢ than
the 37 modes listed in Table 1. We would like to point out

that the sampling effect of the Fourier transform can reduce
the amplitude of the mode by up to factor 2 (Gabriel et al.
2002). This additional fact will also reduce the number of
detectable modes but is not sufficient to explain the discrep-
ancy. This latter is related to the assumption made about
the very nature of the excitation process of the g modes. We
assumed that the modes have a long lifetime and behave like
a pure sine wave of fixed amplitude. As a matter of fact, the
hare (TT) generated a long-lived mode by stochastic exci-
tation, 1.e. using a multiplicative noise and not an additive
noise (See Section 3.2.1). This has an impact on the detec-
tion probability that is indeed lower than for the case of
additive noise (Eq. 10). In the case of multiplicative noise,
Eq. (10) is then replaced by Eq. (14). For a signal-to-noise
ratio greater than 10 the probability of detecting a mode is
a factor two third lower for a multiplicative noise (Eq. 14)
than for an additive noise (Eq. 10). Taking into account
Eq. (14), the number of modes becomes then 48 + 7. That
is about 1.5 o away from the number of modes effectively
detected, thereby confirming Eq. (14). The detection prob-
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abilities derived from Eq. (14) are also included in Table 1.
In summary, it is more difficult to detect a long-lived mode
stochastically excited than to detect a pure sine wave. This
finding 1s the result of the a posteriori analysis and is not
strictly part of the hare-and-hound exercise.

4 DISCUSSION

This technique can be perceived as being applicable only
to very peculiar stars. As a matter of fact, we did check
that such mixed modes occur in stars of mass greater than
1.2 Mg and being beyond the so-called Terminal Age Main
Sequence (TAMS). These stars having exhausted the cen-
tral hydrogen start to burn hydrogen in shells. The slight
necessary contraction required to increase the temperature
of the first shell produces a distinctive anti-Z shape in the
Hertzprung-Russell diagram. We have performed calculation
up to 2 Mg that do confirm the occurence of mixed modes
after the TAMS evolution stage. Therefore, there are numer-
ous stars for which that technique could be applied and use-
ful. Procyon could be taken as an example of such a star. It
could even be argued that the detection difficulties encoun-
tered might have been due to the presence of mixed modes
(Marti¢ et al, 2004; Eggenberger et al, 2004, and references
therein).

5 CONCLUSION

We showed that we could detect long-lived modes embed-
ded into short-lived p modes. This occurs for evolved solar-
like stars having long-lived mixed modes. These modes ap-
pear due to the increase of the Brunt-Vaisala frequency dur-
ing the Helium core evolution phase. The detection of such
mixed modes will provide a powerful tool for understand-
ing the internal evolution of the stars. Here we introduce
a new technique that allows, after having fitted the short-
lived p modes, to detect these long-lived mixed modes. The
steps of the detection technique are summarized in Sec-
tion 3.1.2. The technique was first used in the frame work
of the COROT hare-and-hound exercise. The reliability of
this technique was then tested and validated by performing
Monte-Carlo simulations. We showed during the hare-and-
hound-exercise post analysis, that long-lived modes excited
stochastically are more difficult to detect that deterministic
sine waves. The technique can be applied to stars having

evolved beyond the TAMS.
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APPENDIX A: MLE OF THE MEAN NOISE
VALUE

Considering a random signal z with a y? with 2 d.o.f statis-
tics having a mean value of . From a set of N observations,
the mean value of z (E[z]) can be estimated by using MLE
(Brandt, 1970). The log likelihood [ of the observations is
given by:

l = —i(loga—l—%) (A1)

where z; 1s the 1-th observation of z (See Anderson et al, 1990
for a similar derivation). The minimization of { requires to
calculate:

N
dl N {1
=1

therefore the minimum occurs when:

N
_ 1
=1

So & = Z i1s an unbiased estimator of o with a variance of

With an embedded signal with different statistics not
all z; are independent and identically distributed (i.i.d) ran-
dom variables. In that case, Z is no longer an unbiased esti-
mator of o. If p signals () have a non-central x? statistics
with non-centrality parameters A; (representing the differ-
ence from the regular mean o), while the other N —p signals
(y) have a x? with 2 d.o.f distribution with mean o, then
the mean of z = z 4 y, as derived from Eq. (A3) can be
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written as:

E[z] = El% (Zx+2yj)] (A4)
= SRR 3 ) (45)
_ N];pa—l—%z_:()\i—l—a) (A6)
= 0—1—% (A7)

Thus the bias, b, is given by:

P .
J=1 )\’

D >\z

which means that E[z] & ¢ when Zj;l < 1.

APPENDIX B: AVERAGE NUMBER OF
DETECTABLE PEAKS AMONGST N PEAKS

A proper analysis of the number of detectable modes should
take into account the probability of detecting each long-
lived mode as generated by the hare. The mean number
of detectable modes can be derived from the property of
N Bernouilli random variable X, each having a detection
probability p; for which we have:

E[X;] = p; (B1)
and the standard deviation is given by:
ox; =pi(1-pj) (B2)

In our case, the observed random variable is the sum of the
N random variable X; written as:

=N
X=>X, (B3)
=1

Since the N random variable are independent from each
other, we have:

BX =S p, (B4)

The standard deviation is then given by:
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