r T992MNRAS, 7597 “536K

Mon. Not. R. Astron. Soc. (1992) 259, 536-558

Sources of uncertainty in direct seismological measurements of the solar
helium abundance

A. G.Kosovichev,!» %34 J, Christensen-Dalsgaard,’-> W. Dappen,’- %67
W. A. Dziembowski, %8 D. O. Gough!- 2491011 and M. J. Thompson?1?

VInstitute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

X Institute of Astronomy, Madingley Road, Cambridge CB3 OHA

3Crimean Astrophysical Observatory, p/o Nauchny, Crimea 334413, Ukraine

4 Center for Space Science and Astrophysics, Stanford University, CA 94305, USA

S Institut for Fysik og Astronomi, Aarhus Universitet, DK 8000, Aarhus C, Denmark

$ Departments of Physics and Astronomy, University of Southern California, CA 90089-1372, USA

" Institut fiir Astronomie, Universitit Wien, Vienna A-1180, Austria

8N. Copernicus Astronomical Center, ul. Bartycka Nr 18, Warsaw, Poland

°Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW
19 Astronomy Unit, Queen Mary and Westfield College, Mile End Road, London E1 4NS

" Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, Boulder, CO 80309,
UsA

Accepted 1992 May 27. Received 1992 May 27; in original form 1992 February 25

ABSTRACT

The methods by which Dappen et al. and Dziembowski, Pamyatnykh & Sienkiewicz
recently obtained discrepant estimates of the helium abundance in the solar
convection zone are compared. The aim of the investigation reported in this paper is
to identify the main source of the discrepancy. Using as proxy data eigenfrequencies
of a set of modes of a theoretical solar model, computed with the same physics as
were the frequencies of a reference model with which these data are compared, the
two methods yield similar results. Thus we ascertain that the principal source of the
discrepancy is not in the inversions themselves, which yield essentially a measure of
the variation of the adiabatic exponent y of the material in the He u ionization zone.
Instead it is in the approximations adopted in the treatment of heavy elements in the
equation of state used to relate the variation of y to chemical composition. We obtain
acceptably consistent results when inverting solar data by two methods using the same
equation of state. We attempt to identify the likely residual sources of uncertainty.

Key words: Sun: abundances - Sun: interior — Sun: oscillations.

from which it is possible to isolate the variation of y, which
itself depends on chemical composition. It is sensitive pre-
dominantly to the relative abundances X and Y of hydrogen
and helium, although, to a lesser extent, it depends also on
the abundances of the heavier elements. The greatest

1 INTRODUCTION

Direct seismological measurements of the helium abundance
in the solar convection zone are obtained from the variation
of the adiabatic compressibility of the stellar material in the

second helium ionization zone. What is actually measured is
basically a relation between pressure p, density o and the
adiabatic exponent ¥=(31n p/d1n p),, the partial derivative
being taken at constant specific entropy s. Because turbulent
Reynolds stresses are small well beneath the upper super-
adiabatic boundary layer in the convection zone, the addi-
tional constraint imposed by the hydrostatic equation relates
the variation of pressure directly to that of density. The
seismic data can thus be expressed in terms of y and p alone,

variation of y is produced by the ionization of hydrogen and
the first ionization of helium, which one might therefore
think are the best diagnostics of Y. However, these ioniza-
tions occur in the poorly understood convective boundary
layer in which the stratification is ill-determined. It is only
deeper down, in the second helium ionization zone, where
the stratification is very close to being isentropic and the
convective velocities are small, that we can be sure of the
equation governing the hydrostatic balance.
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Early attempts to determine Y in the He 1 ionization zone
(Dappen & Gough 1986; Dippen, Gough & Thompson
1988a) used a first-order asymptotic theory of stellar oscilla-
tions to estimate the variation of y from the derivative of the
square of the sound speed (Gough 1984a). It was found that
the diagnostic employed was rather insensitive to the value of
Y, and therefore that the measurement (which yielded
Y=0.23310.003) may not be reliable. Consequently, a
more sophisticated approach was adopted, in which informa-
tion contained in the phase of the oscillation eigenfunction in
the He 1 ionization zone, ignored by previous asymptotic
analyses, was automatically taken into account (Déppen et al.
1991). The method was based on a linearization of the differ-
ence between the Sun and a reference solar model, the varia-
tions of y being expressed in terms of an optimally localized
average of Y, in the sense of Backus & Gilbert (1968, 1970),
via the equation of state applied to the reference model. The
result, originally reported by Gough & Toomre (1990), was
Y=0.26810.01.

Soon afterwards, Dziembowski, Pamyatnykh & Sienkie-
wicz (1991), using a regularized least-squares fitting proce-
dure (cf. Phillips 1962; Tikhonov & Arsenin 1977), obtained
Y=0.234+0.005, and Christensen-Dalsgaard & Pérez
Hernandez (1991) and Vorontsov, Baturin & Pamyatnykh
(1991), by calibrating asymptotic phases of solar oscillations
against those of a sequence of theoretical models, obtained
Y=0.25, with a formal error of £0.01 in the latter case.

The wide discrepancies between these results demand
explanation. Accordingly we have carried out a series of
tests. We have concentrated only on the direct inversion
methods, principally because they are aimed more explicitly
at isolating the value of Y from other properties of the Sun.
Although we have succeeded in understanding much of the
difference between the results of the two published inver-
sions, our understanding of the physics of the Sun is not yet
adequate for us to offer a significantly more reliable estimate
of Y. Nevertheless, in view of the recent appearance in the
literature of the disparate determinations without any discus-
sion of the possible origins of the disparities, we regard it as
useful to report now on our findings.

We emphasize that we are attempting to make a direct
measurement of the helium abundance in the convection
zone now, and that as a result of gravitational settling against
diffusion this value is likely to be smaller than the primeval
value (e.g. Proffitt & Michaud 1991).

2 THE METHODS OF INVERSION

Both inversions (Ddppen et al. 1991; Dziembowski et al.
1991) start, in principle, from the linearized equation (cf.
Gough & Thompson 1992)

ov; _ ) Of
[ 2y 22

for differences dv; between the observed cyclic frequencies
of oscillation of the Sun and the corresponding multiplet
cyclic eigenfrequencies v; of a spherically symmetric refer-
ence solar model. The v, are expressed in terms of both the
difference df, at fixed geometrical radius 7, between the
spherically symmetric component of the structure of the Sun
and the structure f(x) of the model, and the difference &y

(1)
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in the adiabatic exponent y. Here, fis either density or the
function u =p/p which is proportional to the square of the
sound speed; the independent variable x is either r or
acoustical radius v=/ c~!dr, where ¢ is adiabatic sound
speed, each measured in units of its value at the photosphere;
= is the value of x at the surface of the reference solar model,
which is near the temperature minimum. With a knowledge
of the abundances X, (x) of chemical elements k in the refer-
ence model, the equation of state y= y(p, o, X;) can be used
to transform equation (1) into

oi_ of ,
Vi L [Kfy f

where Y=X, is the abundance of “He. Here we do not
consider variations in abundances X, other than in Y=X,
and X=X,=1—-Y—-Z. At this stage 0Y is formally a
function of x, since we have not yet used the information that
the convection zone is well mixed. The label i=(n, [) identi-
fies the multiplet, where n is order and /is degree.

In practice, probably the major deficiency in equation (2)
is in the outer layers of the model, in and above the super-
adiabatic convective boundary layer, where the physics is
poorly understood. Consequently, it is incumbent upon us to
seek a measure of Y that is insensitive to conditions in that
region. This is carried out by recognizing that, if the errors in
the surface layers of the model are not propagated (Via the
oscillation eigenfunctions, upon which the kernels K’ y and
K{); depend) deep into the interior, then the errors in the
contribution to the theoretical eigenfrequencies v; can
largely be written as model-dependent functions of fre-
quency divided by the inertia (or energy) E; of the mode
normalized to unit vertical displacement (or velocity) ampli-
tude in the region where the uncertainty is greatest. Accord-
ingly, both inversion methods essentially subtract from the
data év,/v, a quantity F(v,)/E, where F is an unknown func-
tion of frequency. In both cases, F is expressed as a truncated
series of Legendre polynomials P;(x;) with unknown coeffi-
cients a,(0<A<A ) that are independent of v here

KY:0 Y] dx, (2)

2vi—(vs+vm)
=,
Vs~ Vm

(3)

where v, and v, are respectively the smallest and largest
frequencies in the data used. [In their earlier paper, Dziem-
bowski, Pamyatnykh & Sienkiewicz (1990) used a power
series in v, but the difference is only one of numerical con-
venience. |

The procedure adopted by Dippen et al. (1991), which we
call method 1, was to construct appropriate linear combina-
tions
2 vt ow; (4)
of the data from coefficients c/{x,) designed to make uni-
modular Y-averaging kernels

AXf(x; xo)=z Ci(xo)K(Qf(x) (5)

well localized about a chosen location x = x;, and the corre-
sponding f-averaging kernels

Apylx; Xo) =2 ¢{x,) KS«,”y(X) (6)
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small everywhere, subject to the data combination (4) being
invariant under the transformation

ov;—ov,— E;'F(v), (7)

where

A

F(v)= > a; P, ()

A=0

(8)

for all constants a,, and the localization of Ay ;is moderated
by the requirement that the combination (4) is not exces-
sively sensitive to errors in the data. This is achieved by
minimizing, for chosen trade-off parameters a, and 8 and
for a given value A of A, the quantity

f [(Ay 2T %)+ B(A gy P dx+ o 3 cFo, (9)

0 i

subject to [fAy,dx=1, and the A,+1 additional con-
straints

2. ¢;P(u,)/E;=0; 1=0,1,2,...,A,. (10)

The quantities o; are the observers’ estimates of the standard
relative errors in the frequencies v;, which are assumed to be
independent. The function J(x, x,) is zero at x=x,, and
increases as x both decreases and increases away from x,,.
Dippen et al. (1991) chose J=(x —x,)% as do we in the
inversions reported here. Thus the combination (4) repre-
sents essentially an average 8 Y of Y, given by

5Y(xo)= E Ay (x; %) 0Y(x) dx + J’: A y(x; xp) % dx
o,

1

=Zc,~ (11)

in the vicinity of x=x,, but is contaminated by a small
contribution from Jf. In principle, by varying x, one can
attempt to determine averages of 0 Y that are concentrated
near different locations x;, and so test the inversion. In
practice, however, it is possible to localize Ky only in and
above the He i ionization zone. By interchanging Ay ; and
Ay in equation (9) one can similarly sample the function
Of/f (see Déppen et al. 1991).

The procedure of Dziembowski et al. (1991), which we
call method 2, is described by Dziembowski et al. (1990). It is
accepted at the outset that Y is independent of x, at least in
the ionization zones where y varies, and hence equation (2) is
rewritten

LN =
av,.=H K}f)y7fdx+6YJ' KYdx+E[ 1 F(v)| v,

0 0

=A,(0f, 0Y, ap), (12)

in which we have explicitly accounted for the unknown
contribution from the surface layers by the last term in
square brackets in which F(v;) is again taken to be of the
form (8), but now with A=A,. The function &f/f is repre-
sented as a superposition of cubic splines, and the spline
coefficients, together with 0Y and a, (1=0, 1, 2,..., A,) in

the expansion (8) of F, are determined by minimizing, for
some trade-off parameter a,, the quantity

&=, (M)2+ a, J—

i O;V; 0

(13)
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Thus in this case the correction 0 Y to the helium abundance
is determined simultaneously with the structure correction
Of/f. It is given, once again, as a linear combination (4) of
frequency differences, though now there is but a single set of
coefficients c; because JY is assumed to be independent of x.
Thus for this method too, averaging kernels Ay, and A,y
exist (cf. Thompson 1991), as defined by equations (5) and
(6). In this paper we regard just this procedure for inverting
the linearized constraints (2) as method 2. Dziembowski et
al. (1991) additionally applied a non-linear adjustment to
their results, which we discuss in Section 4.5.

3 PREVIOUS INVERSIONS AND TESTS

In this section we summarize briefly the inversions that have
been published and the tests of them that have been carried
out. We must do this in order to acquire an appreciation of
how the differences between the published results might be
explained.

3.1 Solar data

For method 1, a homogeneous data set taken from observa-
tions carried out in 1986 by Libbrecht, Woodard & Kaufman
(1990) was used. The modes observed had degrees in the
range 4-1860. Dippen et al. (1991) selected only those
modes satisfying /<140 and 1500<v<3000 pHz; the
reason for applying upper limits to both / and v was to pro-
tect the determination from inaccurate representation of
modes whose frequencies are more strongly influenced by
the very uncertain outer layers of the Sun, particularly the
upper convective boundary layer. The resulting data set con-
tained /=598 modes; we shall refer to it as 2. The rms
error associated with the measured frequencies in & was
0.04 pHz. Dziembowski et al. (1991) chose sets of modes
from the compilation by Libbrecht et al. (1990) with degrees up
to various upper limits /_,,, over the entire available fre-
quency range. These data included some modes obtained by
different techniques and at different times; thus the sets were
not homogeneous.

3.2 Equation of state

An important step in any seismic procedure for determining
composition is relating macroscopic thermodynamical
variables to chemical abundances. This requires the use of an
equation of state, and evidently the accuracy to which one
can determine Y is limited by the accuracy to which the
equation of state is known. Although both published inver-
sions had utilized tables of the MHD equation of state
(Hummer & Mihalas 1988; Mihalas, Dippen & Hummer
1988; Dappen et al. 1988b), the versions were somewhat
different. Déppen et al. (1991) used reference models from
Christensen-Dalsgaard, Gough & Thompson (1991) which
had been computed using some early tables for a mixture of
H, He and of heavy elements represented by two species:
O and Fe in the proportion 23:2. The ions of the heavy
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elements were assumed to be always in their ground states.
Dziembowski et al. (1991), on the other hand, used tables on
a finer grid that had originally been prepared for the inver-
sions of Didppen et al. (1988a). For these, all the heavy
elements had been represented by only a single species, O.
However, full MHD partition functions of all excited states
were included. The restrictions in both versions of the
equation of state were dictated by the limited availability of
computer time. Throughout this paper we shall refer to these
versions as MHD1 and MHD2, respectively. For the purpose
of relating dy to dY in constructing the kernels Ky and
Ky, it is necessary to know the partial derivatives of y with
respect to Y and two independent thermodynamic variables.
These were not included in the original tables of MHD1, and
therefore both groups used the values from the tables of
MHD?2. Thus the kernels computed by Dappen et al. (1991)
were not strictly consistent with the reference model. At that
time the details of the description of the heavy elements were
believed not to be significant for determining v and its
derivatives in the He m ionization zone.

3.3 Previous tests for the procedures

All the inversions reported explicitly by Dappen et al. (1991)
and Dziembowski et al. (1991) were carried out with the
structure function f=u. Déppen et al. (1991) tested their
procedure with artificial data; eigenfrequencies of a solar
model, different from the reference, were used in place of
solar data, with a view to inferring the structure and the
helium abundance in the convection zone of the proxy Sun.
The same mode set was used for the test as for the solar
inversion, and it was assumed that standard errors in the data
were the same as those quoted by Libbrecht et al. (1990).
Inversions were carried out for different values of the trade-
off parameter o, in each case choosing 8 to render the
estimated contamination from Jf equal to the expected con-
tribution from the data errors; the resulting Y was essentially
independent of «a; for a, = 100. Moreover, the inferred Y
depended only weakly on A,, presumably because the
optimal averaging kernels Ay ; were small in the uncertain
outer layers of the model. The numerical integrations were
carried out by finite differences, using a finite non-uniform
mesh adequate to resolve all the variations in the integrals.
Déppen et al. also modified the proxy data to take some
account of Reynolds stresses and non-adiabatic processes in
the outer layers, yet retaining the simple adiabatic eigen-
frequencies and eigenfunctions of the reference model for
the inversion, and again found no significant influence on the
value of Y inferred. Two reference models (models 2 and 4
in Table 1), both taken from Christensen-Dalsgaard et al.
(1991) and with Y differing by 0.035, were used for the
inversions, to test the validity of the linear approximation (2).
In both cases the inferred Y agreed with the actual value
within the formal errors of the inversion, which were about
10.003. However, that was not quite the case for the solar
inversions, which is why a larger uncertainty was quoted for
the solar Y.

Dziembowski et al. (1990) had reported on tests with
artificial data in their first paper. They too had investigated
the influence of A, and a, on the results. As A, is increased
from zero the inversion changes, and stabilizes for A,=15;
moreover, the differences between the data and the inferred
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frequencies of the proxy Sun are diminished. The suppres-
sion of unreal small-scale structure in the inferred o Inf is
achieved partly by the choice of the number of splines in the
representation and partly by the regularization parameter
a,. Although Dziembowski et al. (1990) found a, = 50, with
20 or 30 splines, to be an acceptable trade-off between error
magnification and resolution of 9 In f, the value of Y inferred
was best when a, = 0. This is presumably because spline knots
were equally spaced in r, which was quite inadequate to
resolve the He 11 ionization zone.

In their subsequent paper, Dziembowski et al. (1991) used
acoustical radius 7 as the independent variable, again spacing
the spline knots uniformly, which resolves the outer layers
more finely. No direct test with artificial data was carried out,
though five different reference models were used to invert
the solar data. Values of Y varying from 0.238 to 0.254 were
obtained, the disparity being interpreted as a result of the
breakdown of the validity of the linearization from which
equations (2) and (12) were derived. Under the assumption
that the true relation can be obtained by adding to equation
(12) a term quadratic in the estimate Y of 8 Y obtained by
minimizing &, Dziembowski et al. fitted inversions from four
of their reference models to the formula

8Y=3Y-C(3Y), (14)

where C was a constant whose value lay between 3.7 and 4.0,
and 0Y was the presumed actual difference between the
solar Y and the Y of the reference model. They thereby
deduced a solar Y somewhat lower than the linear estimates.
Dziembowski et al. also tested the sensitivity of the inver-
sions to the mode set employea, by varying /.,,; they found
that the results were stable for /. = 120, concluding from
this that they had successfully eliminated the influence of the
uncertain outer layers of the Sun by their use of the function
F(v). Moreover, they found that the inferred Y was stable
for A,=20.

Additional tests, not reported in the papers, had been
carried out before the collaborative investigation summar-
ized below was begun. In particular, Dziembowski et al. had
considered the ability of F(v) to eliminate the influence of
the surface layers by artificially setting K, ,=0 in equation
(1) in and above the H ionization zone; they found no signifi-
cant change in the inferred 0Y. Déppen et al. found that
replacing u by p for the structure function f also made no
significant difference to Y. Moreover, they found that for
inferring Y there is no significant difference between using r
and 7 as independent variable; the resolution of the mesh
used for the numerical computations was in both cases quite
adequate. This conclusion does not conflict with the super-
ficially contradictory statement made by Dziembowski et al.
(1990); 40 splines were centred about points uniformly dis-
tributed with respect to the independent variable in method
2, and that provides inadequate resolution of the structure of
the outer layers when the independent variable is 7. However,
using solar data, the value inferred for Y was changed by
only 0.004 at fixed a, when » was used instead of 7.

4 SOURCES OF DISPARITY

It is evident from the preceding discussion that there were
various quite obvious differences between the procedures
that had been carried out to obtain the two published inver-
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sions for Y. We here report the results of our attempts to
assess which are the most likely to have contributed substan-
tially to the discrepancy between the conclusions. To this end
we have carried out tests to compare the two methods. In
addition, we have used an independently written program to
invert the constraints (12); it is essentially the program used
by Gough & Kosovichev (1988), with the regularization
integral modified to be consistent with equation (13).

Most of our tests have been carried out using artificial
solar data. These data were obtained as adiabatic eigen-
frequencies of theoretical proxy solar models. The stratifica-
tion of those models was obtained on a mesh suitable for
computing the oscillation eigenfunctions by taking o(r) and
the surface pressure from models listed in table 4 of
Christensen-Dalsgaard et al. (1991), and computing p(r) by
integrating the hydrostatic equations inwards using a centred
difference scheme of second-order accuracy. The adiabatic
exponent y and its partial derivatives with respect to o, p and
Y were then computed with various versions of the equation
of state; in carrying out this computation the helium abund-
ance Y(r) was either that of the original model, or was taken
from a different model. Two of those models, each with its
own Y(r), were also used as our reference models. The

salient characteristics of the models are summarized in
Table 1.

Table 1. Solar models.

Model Opacity A  Energy generation Evolved or static Yo dy/R

2 CT 0 FCZ E 0.2371 0.2851
4 LAOL 0 P E 0.2724 0.2668
7 CT -0.02 P S 0.2320 0.2786
10 CT 0.1 P S 0.2452 0.3013
13 LAOL 0.1 P S 0.2850 0.2857
15 LAOL 0.2 P S 0.2939 0.3055
R LAOL 0 P E 0.2689 0.273
H CT 0 P S 0.2803 0.2118

Solar models 2-15 are those of Christensen-Dalsgaard et al. (1991),
with corresponding identification numbers, model R is model 3 of
Dziembowski et al. (1991) and model H is a chemically homo-
geneous model in thermal balance. All have the solar mass
M=1989%10% g, radius R=6.960%10!° cm and, except for
model H, the solar luminosity L = 3.845x 1033 erg s~!. All models
have Z=0.0200, except model R which has Z=0.0195, and all
were computed with atmospheres obtained from the
temperature—optical depth relation of the Harvard-Smithsonian
Reference Atmosphere (Gingerich et al. 1971). CT refers to the
opacity tables of Cox & Tabor (1976), LAOL to the Los Alamos
Opacity Library (Huebner et al. 1977)% FCZ denotes nuclear
reaction parameters from Fowler, Caughlan & Zimmerman (1975),
P the parameters of Parker (1986) and Bahcall & Ulrich (1988).
The parameter A is the logarithm (to base 10) of an amplitude
factor determining a quantity by which opacity is augmented in the
temperature range 1x10°-4x10¢ K, in the manner defined
explicitly by Christensen-Dalsgaard et al. (1991). E denotes that the
model has been evolved from a chemically homogeneous zero-age
main-sequence state; S denotes a model in thermal balance obtained
by scaling the hydrogen abundance profile of a corresponding
evolved model with A=0 by such a factor as to yield the correct
luminosity. Y, is the zero-age helium abundance, and d,, is the depth
of the current convection zone.

“In all cases opacities were obtained by linear interpolation with
respect to Y and by using two-dimensional stretched splines with
respect to log o and log T.

The versions of the equation of state we have used are
labelled MHD1-MHDS, and include those used for the
previously published inversions. The characteristics of
MHD1 and MHD?2 were described in Section 3.2, though
here we used new MHD1 tables computed on the finer grid
of MHD2 and with consistent partial derivatives of y. The
effect of the grid size is discussed in Section 4.9. The remain-
ing three versions, also computed on the finer grid, are
described in Section 4.9 where, in addition, the effect of
errors in the equation of state are discussed. Otherwise, all
tests with artificial data consistently employed MHDS for
both the reference and the proxy models.

The tests we have carried out, and the conclusions that we
have drawn from them, are set out below. The results are
summarized in Table 2 and Figs 2-15. In most cases artificial
data were used and, except where stated to the contrary, no
errors were added to them. Unless stated otherwise, the
inversions were of the frequencies in set <, and the values
of o0, were taken to be those quoted by Libbrecht et al
(1990). The structure function f was taken to be u=p/p in
all cases, and the independent variable x was the acoustical
radius . For brevity, where we quote a numerical value of Y.
in what follows, we refer to the constant value in the convec-
tion zone.

4.1 Inversion procedures

Our first aim was simply to compare the two methods using
the same reference models and the same artificial data sets.
Moreover, the proxy models were computed with the same
equation of state as the references. Inversions with respect to
two reference models are recorded in rows 1 and 6-14 of
Table 2. From those, and from all the others we have carried
out, the inferred values Y of Y were typically within 0.003 of
the actual values. Thus we arrive at one of the principal
conclusions of this investigation: if the reference model were
truly a good, though not precise, representation of the Sun
(in the sense that the physics were represented reliably, even
though parameters such as Y were incorrect), and if our
solution to the forward problem of determining the oscilla-
tion eigenfrequencies of the model were also a good repre-
sentation of reality, for the purposes of determining Y there
would be little to choose between the inversion methods, at
least if accuracy were the sole criterion. In coming to this
conclusion, it was necessary to choose trade-off parameters
a,, B and A, in method 1, and a, and A, in method 2; we
discuss below how the choice was made, and how those
parameters influence the inferences. It is pertinent here to
report that, if in the least-squares inversion the regularization
integral in equation (13) is replaced by that used by Gough &
Kosovichev (1988), the resulting change in Y is less than the
difference between the inversions by least squares and by
optimal averages. Consequently the precise choice of
regularization integral is unimportant, at least when the
physics is well represented. (We have found also that the pre-
cise choice of the integral is unimportant when solar data are
used.)

The essential difference between the two inversion
methods is best appreciated by inspecting the averaging
kernels Ay, which weight the averages Y of the inferred Y,
and the kernels A, y which provide an indication of how the
inference is contaminated by the relative difference J In u in
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Table 2. Summary of inversions: Inferences Y of helium abundances of proxy solar models and
the Sun.

No Reference Proxy or sun Method 1 Method 2
Model EQS " Y, Model EQS Yo §Y Y AY Y AY

1 -2 5 0.2371 4’ 5 0.2371 0 0.2347 -0.0024 0.2379 0.0008

2 2 5 0.2371 4 1 0.2724 0.0353 0.2487 -0.0237 0.2495 -0.0229

3 2 5  0.2371 4 2 0.2724 0.0353 0.2626 -0.0098 0.2664 -0.0060

4 2 5 0.2371 4 3  0.2724 0.0353 0.2715 -0.0009 0.2744 0.0020

5 2 5 0.2371 4 4 0.2724 0.0353 0.2661 -0.0061 0.2679 -0.0045

6 2 5 . 0.2371 4 5 0.2724 0.0353 0.2706 -0.0018 0.2756 0.0032

7 2 5  0.2371 7 5 0.2320 -0.0051 0.2319 -0.0001 0.2323 0.0003

8 2 5 0.2371 10 5 0.2452  0.0081 0.2451 -0.0001 0.2458 0.0006

9 2 5  0.2371 13 5 0.2850 0.0479 0.2855 0.0005 0.2859 0.0009

10 2 5  0.2371 15 5 0.2939 0.0568 0.2961 0.0022 0.2904 -0.0035

11 2 5 0.2371 H 5 0.2803 0.0432 0.2838 0.0029 0.2671 -0.0132

12 4 5 02724 2 5 0.2371 -0.0353 0.2357 -0.0014 0.2408 0.0037

13 4 5 0.2724 7 5 0.2320 -0.0404 0.2312 -0.0008 0.2328 0.0008

14 4 5 0.2724 10 5 0.2452 -0.0272 0.2419 -0.0033 0.2554 0.0102

15 2 1 0.2371 2 Iy 0.2371 0 0.2336 -0.0035 0.2372 0.0001

16 2 1 0.2371  Sun 0.2516 0.2483

17 2 2 02371 Sun 0.2331 0.2313

18 2 3 02371 Sun 0.2268 0.2246

19 2 4 02371 Sun 0.2318 0.2301

20 2 5 02371 Sun 0.2256 0.2262

21 2 5 0.2371  Sun* 0.2266 0.2263

22 4 1 0.2724  Sun 0.2557 0.2555

23 4 2 0.2724  Sun 0.2352 0.2420

24 4 3 0.2724  Sun 0.2284 0.2344

25 4 5 0.2724 - Sun 0.2291 0.2368

26 4 5 0.2724  Sun* 0.2299 0.2347

27 R 2 0.2689 Sun 0.242

28 R 2 02689 Sun' 0.237

29 R 2 02689 Sunt$ 0.276

The model identifications refer to the models from which the frequencies were obtained; they are
the same as in Table 1; model 4' has the density distribution of model 4 but the helium abundance
distribution Y(r) of model 2. The identification ‘Sun’ refers to the frequencies of solar modes;
except where indicated to the contrary, they are from the set &, observed in 1986 by Libbrecht et
al. (1990). EQS is the version of the MHD equation of state for computing ¥ and its derivatives. 1’
refers to MHD1 obtained by interpolation in the coarser table (cf. Fig. 14). Y, is the zero-age
helium abundance, which is also the helium abundance in the convection zone of the model at the
present time; 0Y is the actual abundance difference between the proxy and reference models in the
convection zone, and AY is the inversion error Y~ Y,,. In all cases inversions were carried out
with the standard control parameters (a; =104 =1, A, =3 for method 1; a,=10%, A, =13 for
method 2). In all cases but the last the standard errors quoted by Libbrecht et al. (1990) were used,
leading to a formal error of 0.003 in Y by both inversion methods.

Notes: *the frequencies from the set &, measured in 1988; fthe extended data set containing all
those modes measured by Libbrecht et al. in 1986 and by Jiménez et al. (1988); §the standard
errors ¢, in these data have been assumed to be uniform and equal to the rms of the values used
elsewhere; the formal error in Y is 0.003.
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the structures of the proxy model (or the Sun) and the
reference. Some examples are illustrated in Fig. 1. A notice-
able difference between the outcomes of the two methods is
in the susceptibility to contamination of 8Y by 6 In u, which
can be judged from the kernels A, y. These kernels are all
oscillatory with relatively small means, but the amplitudes of
the kernels from the least-squares inversion are much greater

than those from optimal averaging. However, their means are
rather less. Evidently, if 0 In u were smooth, as it tends to be
between theoretical models computed with the same physics,
then the contamination is small, particularly in the least-
squares inversion. However, if in reality dInu varies as
rapidly as A, y in a region where A, y is substantial, as it
might in the ionization zones or near the base of the convec-
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Figure 1. Averaging kernels of solar model 2 with MHDS5 from the two methods of inversion: (a) and (b) are respectively the optimally
localized Y and u averaging kernels A, , and A, y computed by method 1 with @, =10, A, =3 and f=1 (thick curve), =10 (thin curve);
(c) and (d) are corresponding kernels from least-squares inversions computed by method 2 with a,=10% and A, = 13 (thick curve), A, =3 (thin
curve). The thick curves result from our standard control parameters. The abscissa is 7/R, where R is the radius of the photosphere.

tion zone (see Fig. 11), then an erroneous inference of Y is
likely to result, and in that case it is the least-squares inver-
sion that would be the more severely affected.

4.2 Regularization

The degree of regularization is determined principally in
method 1 by the parameter a,, which explicitly moderates
the error in Y caused by errors in the data, and in method 2
by a,, which moderates the flatness of the inferred relative
deviation 6 In u. Since helioseismology based on adiabatic
motion depends solely on hydrostatic stratification, and the
bulk compressibility of the medium, we first performed
inversions of oscillation frequencies of a proxy model which
differs from the reference only through the density distribu-
tion. Explicitly, we chose the density profile of model 2 for
the reference and that from model 4 for the proxy; Y(r) was
taken from model 2 in both cases, for the purposes of com-
puting y and its derivatives with MHDS. Thus
O0Y= Y oxy~ Yyt = 0. The results of the inversions are shown
in Fig. 2 for various values of a;and A (j=1, 2). In the case
of optimally localized averages it is also necessary to choose
B.If B is too small, errors df in f of the reference model con-
taminate the inversion too severely; if 8 is too large, the
resulting excessive magnitudes of the coefficients c; cause the
inversion to be degraded by the errors in the data. Accord-
ingly, § was chosen such that the magnitude of the estimated
contamination due to d In u is the same as the potential con-
tribution by data errors {more precisely, to satisfy equation
16), the latter being illustrated by the error bars about the
inversions with A, = 3. For both methods the inferred value

38Y of dY tends to improve with increasing a; and, when a;
is large, is generally only quite weakly dependent on A ;. In all
cases errors in the optimally localized averages were com-
puted from o, and the coefficients c;. Some were checked by
inverting 100 different data sets obtained by adding Gaus-
sian-distributed random errors with relative variance o? to
the eigenfrequencies of the proxy model. The errors in the
least-squares inversions were estimated from inversions of
the data sets with added errors. Only at the largest value of
a, is a divergence in the least-squares inversions with differ-
ent values of A, evident. That divergence rapidly becomes
much more severe if a, is increased yet further. The results
of the inversions with our standard regularization parameters
(see Section 4.4) are listed in the first row of Table 2. It is
noteworthy that the relative density difference dp/0 between
the proxy and reference models is not small, the density of
the reference in the surface layers exceeding that of the proxy
by a factor of about 2. Thus the exercise demonstrates that
the inversions can quite successfully eliminate erroneous
contributions to the eigenfrequencies arising from quite sub-
stantial errors in the reference model.

To demonstrate how the inversions depend on the control
parameters when 6 Y# 0, we illustrate in Figs 3-8 inversions
of model 4, using now the correct distribution of helium for
that model. Once again the reference is model 2.

Fig. 3 is the analogue of Fig. 2(b), and shows a super-
ficially similar convergence of method 2 with increasing a,,
together with the divergence for the largest value considered.
However, the value to which the inversions seem to converge
is somewhat too high. The best inversions appear to occur
for a, =102, with the largest value of A,. The precision with
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Figure 2. Inferred values 8Y of dY for a sequence of inversions
testing the influence of hydrostatic structure for different values of
a;and A ;. Reference solar model: model 2 with MHDS; proxy solar
model: density profile from model 4, Y, (r)= Y,(r) which takes
the value 0.2371 outside the energy generating core, MHDS equa-
tion of state. (a) Optimal averaging inversions: F(v;)=0 (squares);
A;=3 (full circles with error bars); A,=7 (crosses). (b) Least-
squares inversions: F(v;)=0 (squares); A, =3 (full circles); A,=7
(crosses); A, =13 (open circles with error bars). Inversions for the
standard control parameters are recorded in the first row of Table 2.
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Figure 3. Inferred values 0Y of 6Y as a function of a, for a
sequence of test inversions by the least-squares technique. Refer-
ence solar model: model 2 with MHDS, Y=0.2371; proxy solar
model: model 4 with MHD5, Y=0.2724. F(v,)=0 (squares), A,=3
(full circles), A, =7 (crosses), A, =13 (open circles with error bars).
The dotted horizontal line indicates the true value of §Y.
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which the frequencies of the proxy model are reproduced by
the inversion is measured by

> [(0v,— A/ Viai)]2

(15)

which is plotted against a, in Fig. 4. The value of

(1—1 Z 0i—2)—1/2

for the / modes in & is 0.12 pHz. As is typical of least-
squares inversions, y 2 increases quite slowly with a, when a,
is small. It starts to rise rapidly only at the highest value of a,
plotted, as the solution is falsified by too severe an imposi-
tion of the flatness constraint. Notice that x? does not appear
to decline to zero as a,—0; this is due to the fact that the
spurious small-scale structures required in the solution to
satisfy the frequency conditions (2) cannot be represented
precisely by splines with a limited number of knots. The
spline representation of the solution implicitly applies an
additional smoothness constraint. In these, and all other
inversions by method 2 reported in this paper, 40 spline
knots, uniformly distributed with respect to 7, have been
used.

Some properties of optimally localized averaging are
illustrated in the next two figures. Fig. 5 shows how B
increases with a, in order to maintain the contamination of
Y by d1nu at the level of the error in Y potentially intro-
duced by data errors. This balance is determined by the
equation

T 2
(J Au,yélnud‘r) =) cld, (16)

0

where T is the acoustical radius at the surface of the refer-
ence solar model and SInu is itself obtained from an
optimal-averaging inversion. For a,> a =103, the precise
value of a, depending on A, the solutions are stable and
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Figure 4. The mean-square deviation x? for the sequences of test
inversions by method 2 illustrated in Fig. 3, joined by dotted lines
for the case F(v,;)=0, dashed lines (A, =3), continuous thin lines
(A,=7) and continuous thick lines (A, =13).
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B a,. This is also the regime in which Y hardly varies with
a,, as can be seen in Fig. 6. At lower values of a,, where the
widths of the optimal averaging kernels A, , vary quite
slowly with the influence of the data errors, B rises more
steeply with a,. Fig. 5 is typical of all pairs of models we have
used.

The dependence of the optimally localized averaging on
a, is illustrated in Fig. 6. Within the range of the parameters
considered, the inferred helium abundance improves with a;
at fixed A; not only does the influence of the data errors
diminish, but also the value of 6Y determined by the inver-
sion improves as a, increases. This is as one would expect
when proxy data computed by the same method as the refer-
ence frequencies are employed: because Y is constant
throughout the envelopes of both the solar models, there is
little to lose by permitting the widths of the Y-averaging
kernels to increase as data errors are suppressed, at least if
the rapidly varying superadiabatic boundary layer at the top
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Figure 5. Regularization parameter S of optimally localized
averaging chosen according to equation (16) such that the estimated
contamination of Y by the difference in the stratifications of the
proxy (model 4) and the reference (model 2} is equal to the contri-
bution propagated from the standard errors o;,. F(v,)=0 (joined by
dotted lines), A ; = 3 (dashed lines), A ; = 7 (continuous lines).
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Figure 6. Analogue of Fig. 3, obtained by optimally localized
averaging, with 8 determined by the balance (16), as illustrated in
Fig. 5: F(v)=0 (squares), A;=3 (full circles with error bars),
A, =17 (crosses). The dotted horizontal line indicates the true value
of 6Y.

of the convection zone, in which the linearization might be
suspect, is avoided. Moreover, the increase of § with a, also
reduces contamination by structural differences between the
two models. However, if a, is increased yet further (beyond
about 10% for our artificial data, and about 10° for solar
data), too little weight is given to the constraints (2) and the
estimates of Y diverge.

4.3 Reduction of the influence of the surface layers

The purpose of the function F(v) is to account for the
influence of the very uncertain outer layers of the convection
zone, particularly on the least-squares inversion. It is evident
from the asymptotic structure of the p-mode eigenfunctions
(e.g. Unno et al. 1989; Gough 1992} that, near the surface of
the star where L?c?/w?r*<<1, L? being either (I+1) or
(I+31)? and w being the angular frequency of the mode, the
influence of the stratification of the background state of the
star on the restoring force causing the acoustic oscillations is
a function of frequency alone. This is largely the case also for
the acoustic modulation of the turbulent fluxes of energy
and, more importantly, momentum. The contribution to the
(cyclic) frequency v, is therefore of the form E; !F(v,) (e.g.
Christensen-Dalsgaard 1991), and the introduction of a term
of this form into equation (12) must eliminate the influence
of a region # immediately beneath the surface of the star.
The form of that part of F that arises from the mean stratifi-
cation in # can be considered to contain a contribution
coming from the evanescent region, together with a super-
position of oscillatory functions whose ‘frequencies’ are
roughly twice the acoustical depth of any contributing layer
that lies beneath the upper turning point of the mode (Gough
1990). Therefore, as the number A+ 1 of terms in the
representation (8) of F increases, higher frequency compon-
ents are eliminated and not only is the influence of # dimin-
ished, but also the depth of Z is increased. Consequently, a
greater contribution from the He 1 ionization zone itself is
removed, particularly from the eigenfrequencies of the low-
degree modes for which the / dependence (which depends on
1— L*c?/w?r?) is small. The inversion relies to a greater and
greater extent on the modes of high degree, whose lower
turning points are not much deeper than the He 1 ionization
zone and whose frequencies are not so well determined.
(Note that v/L=11 uHz for modes whose lower turning
points lie at #/R=0.98, from which one deduces that the
lower turning points of the least deeply penetrating modes in
Z, for which v=1.5 mHz and /=140, are within the He n
ionization zone.) It is therefore essential not to adopt too
great a value of A.

This property can be seen directly by inspecting the coeffi-
cients ¢; of the data combination that determines 6Y. The
increasing importance of high-degree modes, coupled with
the increase in the subtlety of the combination of inter-
mediate-degree modes, leads to an overall rise in the magni-
tudes of ¢, This explains the tendency for the uncertainty in
the inversions by method 2, indicated by the error bars in
Fig. 7, to be greater for the higher values of A,. The contri-
bution from the evanescent layers is inversely proportional
to the inertia of the mode, and is thus approximately propor-
tional to v?>™*!, where m = 3 is the effective polytropic index
of the envelope in the vicinity of the upper turning point
(Gough 1990). Thus, as can be seen in Fig, 7, there is a
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stabilization of the inversion for A,>7 once the surface
contribution is removed.

The impact of F on method 1 is considerably weaker,
because, by their very construction, the optimal averaging
kernels are constrained to be relatively small outside the
He 1 ionization zone. In particular, they are smaller than the
corresponding kernels of method 2 in the very surface layers,
as can be seen in Fig. 1. Therefore the dependence of 5Y on
A, which is illustrated in Fig. 8, is substantially weaker than
it is for the least-squares method, as are the kernels from
which it is constructed. However, the stabilization at higher
A, this time for A | 2 6, is again evident.

4.4 On the choice of control parameters

In the light of the preceding discussion, we have selected
a;=10* for method 1. It can be seen from Figs 2(a) and 6
that it imposes the least amount of regularization in the range
in which Y hardly depends on a;, and therefore permits
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Figure 7. Dependence on A, of test inversions by least squares.
The proxy and reference models are the same as those used in Figs
3-6: a,= 1072 (open squares), a, = 10? (full circles with error bars),
a,=10° (crosses). Values plotted at A,= —1 were obtained from
inversions with F(v,)=0.

oossﬂ,lllmumm

Ay

Figure 8. Analogue of Fig. 7, obtained by optimally localized
averaging, with values of g plotted in Fig. 5: a; = 10* (open squares),
a; =10 (full circles with error bars), a; = 10° (crosses). The dotted
horizontal line indicates the true value of 4.
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the greatest concentration of the Y-averaging kernel in that
range. The corresponding value of 8, which imposes the least
constraint on the concentration of Ay, without contaminat-
ing the average 8Y more than the data errors, can be seen
from Fig. 5 to be unity. Since the influence of F(v) is quite
small, we have selected A;=3 as in the previous work
(Didppen et al. 1991); higher values in principle degrade the
power of the data yet, according to Fig. 8, seem to provide no
improvement in the abundance determination.

It appears from Figs 2(b) and 3, and from a perusal of the
inversions for 6 In u, that the optimal value of a, for method
2 is about 102, This is sufficient to have removed most of the
spurious small-scale structure in the inferred stratification
difference du/u, yet not so large as to have imposed exces-
sive artificial flattening. This value is consistent with the
value of 50 chosen by Dziembowski et al. (1990) using
splines with knots regularly spaced in radius. The value
employed (though it was not explicitly stated) in the sub-
sequent estimation of the helium abundance using uniformly
spaced spline knots with respect to acoustical radius (Dziem-
bowski et al. 1991) was 10. The optimal choice of A, is not
so easy to ascertain. As is evident in Fig, 7, the inferred value
of 8Y is stable above A,= 7, which is rather lower than the
value of 20 reported by Dziembowski et al. (1991). This is
not surprising, because Dziembowski et al. needed to repre-
sent F(v) over a wider range of frequency than we do here.
To correspond with the inversions of Dziembowski et al.
(1991), we accordingly adopted the value A,=13 for most
of our tests. We note, however, that the averaging kernels
illustrated in Fig. 1 have much greater amplitudes for the
larger value of A ,, and therefore must be more susceptible to
systematic errors in the modelling.

We note, in passing, that the formal errors in the optimally
localized averages can be reduced somewhat by choosing a
function J in equation (9) that severely restricts Ay, sonly for
x> x,, permitting the averaging kernels to be broader within
the convection zone beneath x, where the chemical composi-
tion is presumed to be uniform. However, we do not advo-
cate using such averages because they rely on the accuracy of
the equation of state over a wider range of thermodynamic
states than do the inversions presented in this paper.

Throughout the rest of the paper, we adopt as standard
control parameters a, =104 =1, A;=3 with J=(7— 1)
for method 1, and a,=10% A, =13 for method 2. For such
values the formal error in Y, based on the random data
errors o, is 0.003 for both methods. This is substantially less
than the uncertainty of at least 0.02 evident in raw frequency
comparisons of the kind considered by Guzik & Cox (1992),
because the inversion procedures have successfully com-
bined the data in such a way as to have eliminated the influ-
ence of errors outside the He i1 ionization zone. This was
made possible by the use of a relatively large number of
modes that sense the structure of the Sun in a variety of
different ways.

4.5 Linearity

We examine now the non-linear correction in equation (14).
Its use by Dziembowski et al. (1991) represents a significant
difference between the two procedures, because it caused a
substantial reduction in the estimate of Y. In constrast,
Dippen et al. (1991) had judged the correction to be neglig-
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ible, because the results of inverting artificial data with
respect to two different reference models had yielded essen-
tially the same outcome. That conclusion is basically consist-
ent with some earlier (unpublished) experiments with density
inversions of mixed polytropes, having polytropic index
m =3 beneath some radius r=x_R, R being the radius of the
solar photosphere, and m=3/2 above; Cooper and Gough
(see Cooper 1981; Gough 1984b) were able to obtain quite
faithful linearized inversions when dp was in places as great
as 40 per cent of the average of the densities of the two
models.

Such linearity may not extend to the Sun. Indeed, in both
investigations of 0 Y it was found that the disparities between
inversions of solar data with respect to different reference
models exceeded the errors anticipated. Dziembowski et al.
(1991) noticed that the systematic trend was largely removed
by the use of equation (14). Specifically, if it is assumed that
0Y=23Y, where 07 is the linearized estimate obtained from
the constraints (12), then from inversions of their reference
models 2, 4, 5 and 6, which have the same atmosphere and
are computed with the same equation of state, one finds that
the rms deviation of the inferred Y from its mean value of
0.2464 is 0.0055. On the other hand, the rms deviation using
equation (14) with C=4.12 is only 0.0004, the mean this
time being 0.2373. We note, in passing, that a non-linear
correction of the form

0Y=38Y-C|dY>? (17)

with C=1.21 fits even better, the rms deviation of the
inferred Y from its mean of 0.2345 being only 0.0002.

Moreover, the linear relation

0Y=1.3883Y (18)

also yields an almost constant value of Y, with the same
deviation as is obtained from the use of equation (17), the
mean inferred Y now being 0.2289.

In an attempt to locate the source of the difference
between 8Y and 8Y we have performed inversions of arti-
ficial data by the two methods, choosing both the reference
and the proxy Sun from amongst models listed in Table 1.
The results are illustrated in Fig. 9, in which §Y, the abund-
ance difference inferred by the linearized theory, is plotted
against the actual difference &Y. Included, for comparison,
are the non-linear relations (14) and (17). It is evident that
the data fit Y=43Y quite well, and thereby confirm the
validity of the linearization assumed in equations (1), (2) and
(12). Notice that this is so despite the fact that the theoretical
solar models do not even constitute a homogeneous set: they
are based on different opacity tables, some of which are
artificially modified, and different nuclear reaction rates and,
furthermore, some are consistently evolved and some are
not. Different equations of state were also used, but in all
cases the same equation of state was used for the reference
and the proxy models. We conclude, therefore, that the
source of the disparity amongst the values of the solar helium
abundance inferred by Déppen et al. (1991) and Dziem-
bowski et al. (1991) from the linearized relations (2), using
various reference models, cannot be reliably described by a
simple non-linear relation such as is given by equation (14)
or (17) between 6 Y and 8Y, presumed to arise from correc-
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Figure 9. Inferred values Y of 0Y obtained by optimally localized averaging (full circles) and least-squares inversions (open circles) of
artificial data, plotted against the true 6Y. The values are taken from Table 2 and are identified by row number in the figure; only those
obtained with a reference computed with the same equation of state as that of the proxy are plotted. The dotted curve represents the non-linear
relation (14) with C=4.12; the dashed curve is relation (17) with C=1.21. The continuous lineis 6 Y=4Y.
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tions to the constraints (2) from terms of higher order in the
deviations 0 In u and JY. There must be some other incon-
sistency between the reference frequencies and the solar
data. We shall return to this point in Section 6.

4.6 Influence of the atmosphere

Changing the atmospheric structure of the reference model
might produce quite a profound influence both on the struc-
ture of the interior of that model when regarded as a function
of r or 7 (Christensen-Dalsgaard 1988) and possibly, there-
fore, on the oscillation eigenfunctions too. Although the
explicit modification is only to the very superficial layers,
there is a significant reaction of the sound speed at constant »
in the He 1 ionization zone (though at constant pressure or,
equivalently, interior mass, the variation is substantially
smaller). Its influence cannot therefore necessarily be eradi-
cated solely by the extreme localization of the kernels of the
reference model by method 1, nor can it be adequately
represented by F(v). One consequence is a slight modifica-
tion to the inferred value of the linear correction dY, as is
evident from the calculations of Dziembowski et al. (1991),
who compared inversions of solar data from reference
models computed with temperature—optical depth relations
obtained from the Eddington approximation and from the
Harvard—-Smithsonian Reference Atmosphere (Gingerich et
al. 1971).

We have carried out additional comparisons. Some
examples are illustrated in Fig. 10, in which both the refer-
ence model and the proxy Sun were obtained from the dens-
ity distribution of model 2 beneath the photosphere, the sole
difference being that the proxy had an atmosphere computed
from the temperature—optical depth relation of the atmos-
pheric model 5C of Vernazza, Avrett & Loeser (1981} and
an opacity obtained by multiplying the values in the Cox-
Tabor tables by a factor 1.5, intended to mimic the aug-
mentation suggested by Cox (1990) resulting from a
reassessment of the contribution from Fe. MHDS was used
to compute y. Inversions using standard control parameters
underestimate Y by 3x10°* using method 1 and by
1.1 X 1073 using method 2. These results, together with some
others from inversions we have carried out using the refer-
ence models of Dziembowski et al. (1991), suggest that
differences in the atmospheric models used by Déppen et al.
(1991) and by Dziembowski et al. (1991) might account for
no more than about 0.001 in the inferred value of Y. Of
course, the solar atmosphere might be sufficiently different
from those considered here, by virtue of its being laterally
inhomogeneous and time dependent, that its misinterpreta-
tion introduces an error greater than this into the results of
both methods.

4.7 Internal stratification

The principal assumptions upon which the frequency
constraints (1) depend are that the Sun and the reference
model are both spherically symmetric and in hydrostatic
balance,! and that their oscillation frequencies are well deter-
mined by linearized adiabatic theory. Of couse, these
assumptions are not satisfied in the very outer layers of the
Sun but, as we have already argued, we hope to have elimin-
ated most of the error arising from those layers by our use of
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Figure 10. Inferred values of 0Y for a sequence of inversions
testing the influence of the atmospheric layers, for different values
of a; and A;. Reference solar model: model 2 computed with MHD5
and an atmosphere computed from the temperature-optical depth
relation of the Harvard-Smithsonian Reference Atmosphere
(Gingerich et al. 1971); proxy solar model: model 2 computed with
MHDS5 and an atmosphere computed from the temperature-optical
depth relation from model 5C of Vernazza et al. (1981) with the
opacity scaled by a factor of 1.5. Y, = Y,;=0.2371. (a) Optimally
localized averages with F(v,)=0 (squares), A, =3 (full circles with
error bars), A;=7 (crosses). (b) Least-squares inversions with
F(v,)=0 (squares), A,=3 (full circles), A,=7 (crosses), A,=13
(open circles with error bars).

F(v) and, in method 1, also by explicit localization of the
averaging kernels. In particular, no assumption is made about
thermal balance, which suggests that the inversions should be
insensitive to opacity and nuclear reaction rates. Further-
more, no assumption is made about the spatial variation of Y,
nor how it came about, except that in method 2 the function
Y is quite justifiably assumed to be constant throughout the
region where y varies substantially.

Explicit demonstrations of the role of thermal stratifica-
tion and any variation of Y beneath the ionization zones are
provided particularly by the inversions summarized in rows
1 and 11 in Table 2. The more extreme example is the
chemically homogeneous model H. Although it was com-
puted to be in thermal balance, its luminosity was deliber-

More generally, it is required only that deviations from sphericity
are small and that the averages of p and o over spherical surfaces
satisfy the hydrostatic equations, provided that the multiplet
frequencies v; are regarded as uniformly weighted averages of the
non-degenerate singlet frequencies over azimuthal order. Of course,
it goes without saying that the mass and radius of the reference
model must agree with those of the Sun (or the proxy model).
However, the luminosities need not correspond.
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ately set to only 90 per cent of the solar value to demonstrate
the lack of sensitivity of the inversions to that parameter. As
can be seen in Fig. 11, for the model the function u differs in
places from that of the reference by as much as 24 per cent,
particularly in the energy-generating core; the density differs
by up to 40 per cent. Yet the determination of Y by method
1 is in error by no more than 0.003. Method 2 is rather less
accurate in this case. (In the light of the discussion at the end
of Section 4.1, that is not surprising; as is evident from Fig.
11, the function du/u is not smooth near the base of the con-
vection zone, and therefore the relatively large oscillatory
average kernel A, y, illustrated in Fig. 1, introduces greater
contamination of _g? from errors in the hydrostatic struc-
ture.) Nevertheless, it must be borne in mind that the struc-
ture of model H, at least in the radiative interior, is known to
differ from that of the Sun by much more than the structure
of standard solar models (cf. Christensen-Dalsgaard, Gough
& Thompson 1988b; Gough & Kosovichev 1988, 1990;
Dziembowski et al. 1990; Christensen-Dalsgaard et al. 1991;
Kosovichev & Fedorova 1991) such as reference models.2, 4
and R used for our inversions of solar data here. The inver-
sions of model H should not, therefore, be considered to sug-
gest that the estimations of the solar helium abundance
recorded in rows 16-26 of Table 2 are less reliable by
method 2 than they are by method 1. Model 4’ has the wrong
helium abundance Y(r) for its density stratification, and
therefore is not in thermal balance if the opacity tables and
the nuclear rates are to be believed; moreover its luminosity
is also different from the solar value. Nevertheless, its helium
abundance is still quite faithfully extracted by the inversion.

4.8 Mode set

Diappen et al. (1991) used a smaller data set than did Dziem-
bowski et al. (1991). The cost of optimally localized averag-
ing increases with the number of modes much faster than that
of method 2. Consequently attention was restricted to a
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Figure 11. Relative differences o Inu=Inu—Inu, between the
structure functions u=p/p of several of the proxy models and the
corresponding function u, of model 2, plotted against #/R, where R
is the radius of the photosphere. The proxy models listed in Table 1
are model 4 (continuous curve), model 7 (dots), model 10 (short
dashes), model 13 (long dashes) and model H (dot-dashed curve).
The relative differences 6 In o in density tend to be larger; for
example, for model H, d In o = 0.41 at r=0.

subset of modes, namely modes with /<140 and v<3 mHz.
With these are generally associated smaller observational
errors, and they are less prone to influences from the
uncertain outer layers of the Sun.

Some indication of the effect of changing the size of the
mode set is provided by Dziembowski et al. (1991), who
demonstrated in their fig. 4 essentially no influence on the
value of Y from solar modes with /> 140. This is principally
a consequence of the relatively low weighting given to those
modes, resulting from their larger errors, and so does not
provide quite the test of the method that Dziembowski et al.
suspected.

It was the opinion of both Déppen et al. and Dziembowski
et al. that one should avoid modes that are confined to the
upper superadiabatic convective boundary layer. Otherwise,
the inversions would be severely degraded by the uncer-
tainties resulting from the substantial turbulent fluctuations
that occur there. Dippen et al. chose to restrict attention to
modes of relatively low frequency (v; <3 mHz) whose upper
turning points are quite deep, and whose frequencies are
therefore relatively insensitive to the structure and dynamics
of the boundary layer. Consequently, the inversion of the
frequencies must also be insensitive to that layer. Dziem-
bowski et al., on the other hand, argued that one should sim-
ply limit oneself to modes whose lower turning points are
focated well below 7/T=0.9 (r/R=0.997). This level is
safely below the boundary layer, yet above the region in
which most of the effect of He ionization on y occurs. The
restriction is principally one on the degree / of the modes,
and translates to requiring //v to be substantially less than
180, where v is measured in mHz. By so doing, the uncer-
tainties in frequency arising from the boundary layer are only
weakly dependent on /, and their influence on the inversion
should therefore be eliminated by the function F(v).

An indication of how different modes contribute to the
inversion is given by Fig. 12 in which we illustrate the coeffi-
cients c;, plotted against the reduced frequency v/(I+3)
which determines the lower turning point. The magnitudes of
the coefficients in panels (a) and (c) are determined to a great
extent by the error estimates ¢,. However, if all the modes are
weighted equally, assuming uniform standard errors equal to
the mean of the observational estimates used for panels (a)
and (c), the magnitudes of the coefficients are typically
increased, particularly those which in reality have large o,
Consequently our estimate of the error in Y is increased too.
There is a tendency of modes with high / or high v, whose
dynamics are more susceptible to the turbulent fluctuations
in the upper convective boundary layer, to have the greater
errors. It is these very modes that one would expect to be
required to eliminate successfully the influence of the outer
layers, particularly in method 1. Consequently, we would
anticipate that by permitting them to have relatively greater
weight an optimal inversion could be found with generally
smaller values of ¢, which is not the case. We do not under-
stand why that is so.

The predominant dependence of ¢; on g; provides the
explanation of the insensitivity of Y to /,,, found by Dziem-
bowski et al. (1991). Of course, the outcome of augmenting
< with modes of high frequency or high degree, when one
uses artificial data computed from proxy solar models that
are based on essentially the same physics as the reference, is
not to alter substantially the value of Y inferred from inver-
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Figure 12. Coefficients c; relating the averaging kernels A, to the data kernels K{), according to equation (4): (a) determining optimally
localized averages with o, appropriate to the observations of Libbrecht et al. (1990); (b) with uniform o;; (c) from a least-squares inversion with
o0, appropriate to the observations; (d) with uniform o,. The reference is model 2, and standard control parameters have been used.

sions; it is merely to reduce the estimated random error,
which is a natural consequence of using more data. However,
when solar data are used, the outcome is different. Rows
27-29 of Table 2 record least-squares inversions of solar
data using, respectively, modes of < and all the modes
published by Libbrecht et al. (1990), the latter being assigned
first the observational error estimates and secondly equal
values of o, The first two inversions yield essentially the
same results, as Dziembowski et al. (1991) found using the
larger data sets that included the mean frequencies obtained
by Jiménez et al. (1988) and the frequencies of high-degree
modes (/> 140) observed by Libbrecht et al. (1990) in 1987
by a technique different from that used for the intermediate-
degree modes (/<140) in 1986. The reason is that the
additional modes are given low weight by the large error esti-
mates. When, in the third inversion, the weights are equal-
ized, however, the results are significantly different: the
estimate of Y is increased by 0.036, yet the estimated error is
only 0.003. Not only does this demonstrate the importance
of the high-degree modes, but it also exposes once again the
existence of a fundamental inconsistency between the
theoretical and the solar frequencies that is not removed by
F(v).

4.9 Equation of state

Both methods of determining Y require a precise knowledge
of thermodynamic quantities, as functions not only of state
variables but especially of the chemical composition. No
laboratory data are available for the physical conditions in
the solar convection zone, and we have therefore to rely on
theoretical models of the plasma. These models are approxi-
mate realizations of the basic principles of statistical mech-
anics. In the simplest case, all particles in the plasma could be

considered to be non-interacting and without internal
degrees of freedom, subject to reactions that describe the
formation of ions and atoms and molecules. The maximum-
entropy principle in the form of free-energy minimization
yields the law of mass action in the form of the Saha equa-
tion, from which the equilibrium abundances of the species
undergoing these reactions are obtained. This approximation
is much too poor for our purposes. That has long been
recognized, and has resulted in the use of substantially more
sophisticated equations of state for helioseismic analyses (e.g.
Berthomieu et al. 1980; Shibahashi, Noels & Gabriel 1983;
Christensen-Dalsgaard, Dippen & Lebreton 1988a).

A first step away from the approximation of non-interact-
ing particles is made by including the (classical) Coulomb
potential between charged particles. Its influence is usually
evaluated in the Debye-Hiickel approximation, leading to a
(negative) Coulomb-pressure correction. As a second step,
one considers the internal degrees of freedom of the bound
species. Here, there are two clearly distinct approaches, one
being realized in the so-called chemical picture, the other in
the physical picture (e.g. Dappen, Keady & Rogers 1991).
While the chemical picture treats the bound systems as if
they were independent particles (possibly with excited
states), the physical picture deals only with fundamental
particles (electrons and nuclei). The advantage of the chemi-
cal picture is that a wealth of results from atomic physics can
be used, because the notion of atoms is still assumed to be
valid, despite the plasma environment. Heuristic arguments
have to be invoked to correct the atomic states for plasma
effects, and only then can one proceed to the computation of
the statistical mechanical equilibrium. The MHD equation of
state follows this programme (Mihalas et al. 1988; Déappen et
al. 1988b). In the physical picture there is no such separation.
Here, the statistical mechanics is based on the Hamiltonian
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governing the dynamics of the electrons and nuclei, and thus
the bound systems are implicitly contained in the sum over
all states of that Hamiltonian. The advantage of this proce-
dure is that it tackles the statistical mechanics of the plasma
at the same time as the quantum mechanics. In principle, no
heuristic consideration about how the atoms and ions are
perturbed by the surrounding plasma is therefore necessary.
A practical realization of the physical picture has been
pursued by a group at Livermore (Rogers 1986; Iglesias,
Rogers & Wilson 1987). It turns out that a part of the (other-
wise divergent) sum over bound states is taken away by terms
in the continuum, which leads to the so-called Planck-Larkin
partition function (whose main feature is that it essentially
reduces the sum over bound states to include only those
having a binding energy greater than kT').

One might have thought that the thermodynamical quan-
tities from the two approaches would differ from each other,
perhaps by as much as they each differ from the simple Saha
results. However, comparisons have shown that that is not
the case (Déppen, Lebreton & Rogers 1990; Déappen 1990).
A more careful analysis has shown that the most significant
part of the deviation from the simple Saha result stems from
the Coulomb-pressure correction, which has led to simpli-
fied equations of state that simulate well the features intro-
duced by both the MHD and the Livermore equations of
state (Christensen-Dalsgaard 1991). The similarity between
the results of these approaches makes it more difficult to test
the physics of the equation of state itself, because one has to
find observable features that can still distinguish the small
differences between the MHD and Livermore thermo-
dynamic relations.

So far, we have discussed only the influence of hydrogen
and helium. Although the signature of heavier elements has
already been seen in the derivatives of y (see Dappen &
Gough 1984, 1986), it is weak, which is not surprising given
that it arises basically in proportion to abundance by
number. The first MHD tables for solar applications (Christ-
ensen-Dalsgaard et al. 1988a) were tailored to examine the
effect on p-mode frequencies of details in the treatment of
the hydrogen and helium ionization zones. To bypass pro-
hibitive computations, savings were made in the treatment of
the heavy elements. There are two ways to save: first, one can
limit the number of heavy elements, while keeping their total
mass fraction the same, and secondly, one has the option of
neglecting the detailed partition functions of the bound states
of a chosen number of ions of the heavy elements. Thus the
amount of computation is controllable.

These practical considerations are the reason for the exist-
ence of different tables: in particular, MHD1 and MHD2.
The MHD1 table was computed for the purposes of evolving
solar models (Christensen-Dalsgaard et al. 1988a), and was
therefore required to accommodate hydrogen burning in the
core. For that study, the equation of state was computed
without some of the partition functions of the higher ions of
the heavy elements, with the idea in mind that it was prudent
to represent a somewhat realistic chemical composition. The
equation of state would thus be more consistent with the
opacity used in the model, though this is hardly relevant in
the convection zone. The MHD2 table, on the other hand,
was computed for the He abundance calibration study of
Dippen et al. (1988a), in which a comparison of solar
envelope models was made. This investigation considered a

narrower range of physical conditions and, in particular, did
not involve taking into account the comparatively wide
variation of Y in the core. Therefore it was possible, with the
resources available, to compute the tables on a finer mesh.
MHD?2 was used by Dziembowski et al. (1991) [and by
Dippen et al. (1991) for the derivatives of ¥, though the
latter used reference models from Christensen-Dalsgaard et
al. (1991), which were based on MHD1]. The differences
between MHD1 and MHD?2 were thought to be insignificant
in the estimates of y and its derivatives in the He 1 ionization
Zone.

It has now become clear that the detailed treatment of the
heavy elements matters. Indeed, it has turned out that the
choice of the number of heavy ions treated with detailed
partition functions has an even stronger influence on y than
the selection of heavy elements in the chemical composition.
To obtain a clearer picture, we have carried out MHD calcu-
lations for a test mixture that contains a mass fraction 0.02 of
oxygen as the only heavy element. For a sequence of temper-
atures and densities corresponding to the second ionization
zone of helium in the Sun, we have computed y, and for each
pair of temperature and density, we have systematically
switched on (starting from the ground state) the full MHD
partition functions. We did this first to neutral oxygen, then
to O, then O**, and finally to the hydrogenic ion. During
this process, we have noted a variation of y of a few parts in
103, which at first sight is quite surprising given the small
number of oxygen particles present (see also Dappen 1992).
This can lead to an error in the inferred value of Y of several
times greater magnitude.

To assess the importance of the approximations to the
physics, we have augmented the MHD1 and MHD?2 tables
with three other tables. Their distinguishing characteristics
are listed in Table 3. We have also added consistent partial
derivatives of y to MHD1, and all inversions from reference
models with MHD1 reported in this paper were carried out
with those consistent derivatives. Using both solar model 2
and solar model 4 as references, we have inverted the eigen-
frequencies in & of all the other models listed in Table 1
using all five versions of the equation of state in each of the
proxy models. The entries in rows 2 to 6 of Table 2 typify the
results. Versions 3-5 of the equation of state are rather
similar and, when MHD' is used for the reference, they yield
the correct result typically to within about 5 parts in 103
with our standard control parameters, MHD2 produces an
underestimate of about 0.008, and Y of the proxy with
MHD1 is underestimated by nearly 0.025. An indication of
how the estimates depend on the regularization parameters
a;is given by Fig. 13. Notice that, when different equations of
state are used in the reference and proxy models, stabiliza-
tion with increasing a, tends to be slower. Notice also in Fig.
13(b) that, as a, becomes very large, the values of Y inferred
from the least-squares inversion appear to be converging
slowly towards the same value, which is close to the correct
value, irrespective of the equation of state. (Of course, one
cannot actually achieve that convergence by increasing o,
yet further because, as is discussed in Section 4.2, at higher
values of a, the solution is falsified by the excessive influence
of the flatness constraint.) The optimal averages, on the other
hand, converge to different values.

It follows from this study that, if the MHD equation of
state with its treatment of excited states were indeed a rela-

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992MNRAS.259..536K&db_key=AST

r T992MNRAS, 7597 “536K

Table 3. Equations of state.

Table Composition® Mesh size”:

logT/logp/Y
MHD1 H, He, O, Fe 0.03/0.1/0.03
MHD1’ H, He, O, Fe 0.09/0.3/0.03
MHD2 H, He, O 0.03/0.1/0.03
MHD3 H, He, C, N, O, Fe 0.03/0.1/0.03
MHD4 H, He, C, N, O, Fe 0.03/0.1/0.03
MHD5 H, He,C, N, O, Fe. 0.03/0.1/0.03
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Complete bound-state partition functions

H, He, Het

and neutral O and Fe only
H, He, Het

and neutral O and Fe only
all species
H, He, Het

all species of H, He, C, N, O,
neutral Fe and Fet only

all species

Notes. “The relative abundances of O and Fe in MHD1 are 0.92 and 0.08. The relative
abundances of C, N, O and Fe in MHD3-5 are 0.1776, 0.0433, 0.3926 and 0.3865,
respectively; Z=0.02. ®In all cases thermodynamic variables were obtained by four-

point Lagrangian interpolation in log o and log T’ and quadratic interpolation in Y.
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Figure 13. Inferred values of 0Y for a sequence of inversions
testing the influence of the equation of state. Reference solar model:
model 2 (Y=0.2371) with MHDS5; proxy solar models: model 4
(Y=0.2724) with MHD1 (squares), MHD2 (crosses) and MHD5
(circles). (a) Optimally localized averages (A, = 3); (b) least-squares
inversions (A,=13). Because of the large range of the ordinate,
error bars are shown in (b) only for log @, =0 and 1.

tively accurate description of reality, it could be concluded
from hindsight that Dziembowski et al. (1991) happened to
use a better set of tables (MHD?2) than did Déppen et al.
(1991). However, since the fundamental issues of the
equation of state are not resolved yet, it is too early for a
judgement. A collaboration with the Livermore group is

under way to ascertain whether an analogous effect results
from the physical picture.

Finally, we point out that the major difference between the
predictions of MHD1 and the other versions of the equation
of state lies in the physical assumptions and not in interpola-
tion error. We have tested this by recomputing models using
a new MHD1 table on a finer grid. Inversions of model 2
with respect to itself computed with the finer tables are illus-
trated in Fig. 14, and show that the relative error introduced
by interpolation is about 0.004 for method 1, and about
0.001 for method 2. Although, strictly speaking, this is not a
direct test of using different reference models, the errors
introduced are comparable, as is evidenced by comparing
the inversions of row 6 of Table 2 with their reciprocal
counterparts of row 12. We note also that the result of
combining MHD? partial derivatives of y with MHD1 values
of y produces a false contribution of about 0.005 to the
estimate of Y obtained by Dippen et al. (1991).

5 INVERSION OF SOLAR DATA

Several inversions of solar data have been carried out by the
two methods. As in the work of Dippen et al. (1991), all the
frequencies v; and the estimated possible errors o; were
taken from the observations of Libbrecht, Woodard and
Kaufman, kindly supplied before publication (Libbrecht,
Woodard & Kaufman 1990). Using the 1986 data reported
by Libbrecht et al. (1990), we have varied A, a;, the mode
set and the reference model, to provide a comparison with
the tests on artificial data. Some of the results are listed in
Table 2.

The influence of A; on Y is similar to that found in Sec-
tion 4: on the whole the inversions tend to stabilize as A ;
increases. The dependence on q; is illustrated in Fig. 15,
using three different versions of the equation of state for the
reference models. The figure bears a superficial resemblance
to Fig. 13. The optimal averages converge to constant values
for a;210% the values depending on the version of the
equation of state that was used for the reference model.
Moreover, the differences between the values to which the
optimal averages converge are more or less consistent with
those found when inverting the artificial data (after taking
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Figure 14. Inferred values of 6Y for a sequence of inversions

_testing numerical errors in the equation of state, for different values

of a; and A ;. Reference solar model: model 2, computed with fine
MHD1 tables; proxy solar model: model 2, computed on the
original coarser grid of the MHD]1 tables. (a) Optimally localized
averages with F(v;)=0 (squares), A, =3 (full circles with error
bars), A, =7 (crosses); (b) least-squares inversions with F(»,)=0
(squares), A, =3 (full circles), A, = 7 (crosses), A, = 13 (open circles
with error bars).

due account of the sign difference, because in Fig. 13 it is the
equation of state of the proxy, not the reference, that varies).
The inversions by least squares appear to be converging to
the same value at very high a,, as in Fig. 13(b); the principal
difference is that now none of the inversions seems to have
converged fully, suggesting that all three sets of reference
eigenfrequencies are inconsistent with the solar data.

We have also carried out comparable inversions of data
from modes in 2 obtained from observations by Libbrecht
and Woodard in 1988 (private communication). Two
examples are recorded in rows 21 and 26 of Table 2.
Although the later frequencies are different from the 1986
data, and indicate a temporal variation in the structure of the
Sun, particularly in the very outer layers, which is probably
associated with the solar cycle (Libbrecht & Woodard
1990a,b), the helium abundance inferred from them is essen-
tially unchanged. Therefore the inconsistency between the
reference models and the Sun is unlikely to be related
directly to whatever causes the solar cycle variation.

6 DISCUSSION

There exists a variety of procedures by which theoretical
models of the Sun can be compared with observation in
order to determine the abundance of helium in the solar
interior. The superficially simplest is a straightforward

calibration of the models to the observed radius and lumino-
sity at the presumed solar age, ¢, ignoring the seismic data.
The calibration can be carried out for a wide range of
chemical compositions and, if the composition is paramet-
rized by the initial relative abundances X,, Y, and
Zy=1—X,— Y, (presumed constant) of H, “He and the
aggregate of all other elements, it provides a unique relation-
ship between Y, and Z,. Therefore, with some assumption
about Z,, which is typically (though sometimes implicitly)
imposed as a value of Z,/X, obtained from observation (e.g.
Anders & Grevesse 1989), a value of Y, is obtained. One
also obtains the helium abundance Y(r)at the present time. It
is important to realize, however, that not only is the outcome
dependent on the values of ¢, and Z,/X,, adopted, but it also
depends on all the physics assumed in the construction of the
solar models: the microscopic physics from which the
opacity, the nuclear reaction rates and the equation of state
are derived, and the macroscopic physics, which embodies
all the ad hoc assumptions of the theory of stellar evolution.
The calibration depends also on the initial conditions
assumed. Thus the mere fact that the outcome appears now
to be becoming robust, which Guenther et al. (1992) have
recently emphasized, is hardly a reliable indication of the
veracity of the conclusion.

A principal issue of concern is the macroscopic physics.
For example, all standard solar models are unstable at some
epochs in their evolution to thermally driven motion in the
core (Christensen-Dalsgaard et al. 1974; Boury et al. 1975;
Shibahashi, Osaki & Unno 1975; Saio 1980; Kosovichev &
Severny 1985) and possible shear turbulence in the core and
elsewhere (e.g. Zahn 1983). These instabilities are ignored in
computing standard solar models. The models cannot, there-
fore, faithfully represent the Sun. The non-linear develop-
ment of such instabilities is not adequately understood, and
we do not know to what extent it modifies the solar structure.
In particular, it could lead to a significant redistribution of
helium (e.g. Dilke & Gough 1972; Schatzman et al. 1981;
Roxburgh 1986; Ghosal & Spiegel 1991), and consequently
degrade the calibration substantially. Helium settling against
diffusion also modifies the overall structure (e.g. Cox, Guzik
& Kidman 1989; Proffitt & Michaud 1991; Vauclair &
Charbonnel 1991). The predominant modification it causes
is in the outer layers of the radiative interior, which is largely
compensated by an adjustment to the representation of the
convection zone (via the mixing-length parameter). There-
fore the influence on the value of Y, is relatively small: Cox
et al. (1989) found that settling could decrease the value of
Y, obtained from model calibration by about 0.002. The
helium abundance in the convection zone might be reduced
by as much as 0.05 (Vauclair & Charbonnel 1991; see also
Guzik & Cox 1992; Proffitt & Michaud 1992).

Severe additional constraints are imposed by seismic data.
In particular, accurate information about the sound speed
throughout most of the solar interior has been provided by
these data from which, for example, the location of the base
of the adiabatically stratified region of the convection zone
has been determined (Christensen-Dalsgaard et al. 1991).
Such information could be used to constrain evolved solar
models further. However, it cannot naively be added to the
calibration without discarding one of the previously adopted
constraints or assumptions, because the procedure would
then be overdetermined.
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Figure 15. Inferred values Y of Y for a sequence of inversions of solar frequencies measured by Libbrecht et al. (1990) obtained from two
different reference models. Optimally localized averages (method 1) from (a) model 2 (Y=0.2371) with MHD1 (squares), MHD? (crosses) and
MHDS (circles), (b) model 4 (Y=0.2724) with MHD1 (squares), MHD2 (crosses) and MHD5 (circles); least-squares inversions (method 2)
from (c) model 2 (Y=0.2371) with MHDI1 (squares), MHD2 (crosses) and MHD5 (circles), (d) model 4 (Y=0.2724) with MHD1 (squares),
MHD?2 (crosses) and MHDS (circles). In all cases the standard regularization parameters (a; =10% =1, A;=3 for method 1; a, =102,

A, =13 for method 2) were used.

Of course, one possibility would be simply to vary Y, to
obtain a best fit of the eigenfrequencies of a sequence of
theoretical models to the seismic data. Indeed, this is the first
method to have been used to attempt to determine Y, by
seismic means (Christensen-Dalsgaard & Gough 1981).
However, none of the theoretical models is consistent with
observation, and a satisfactory fit cannot be obtained.
Instead, the seismic data are revealing errors in the physics,
such as in the calculations of opacity (Christensen-Dalsgaard
et al. 1985; Iglesias & Rogers 1990, 1991; see also Korzen-
nik & Ulrich 1989; Cox, Guzik & Raby 1990) and the treat-
ment of the outer layers of the convection zone upon which
the raw eigenfrequencies strongly depend, and which there-
fore degrade the calibration. In order to assess how best to
carry out the calibration for any solar property such as Y, it is
evidently essential to understand in what manner the eigen-
frequency spectrum is influenced by different aspects of the
Sun’s structure (see Gough 1983), otherwise a discrepancy
between theory and observations might be incorrectly inter-
preted. The situation is exemplified by the recent numerical
studies by Guzik & Cox (1992), who reported some evidence
that model convective envelopes having a helium abundance
that is lower (Y=0.24) than the value of Y, obtained from
evolutionary models fit the (high degree) seismic data more
closely, whereas Guenther et al. (1992) reported a Yale
standard solar model without helium settling (with
Y,=0.2810.01) that reproduces the (low degree) oscillation
spectrum within the errors associated with the uncertainties
in the model physics.? This highlights the unreliability of the
naive seismic model calibration.

Most of the modern seismic methods, however, are aimed

explicitly at obtaining the helium abundance Y directly.
Since, except in the very surface layers, the oscillations are
linear and adiabatic, they depend essentially only on the
structure of the Sun through the hydrostatic stratification
and the adiabatic exponent 7, and therefore they can sense Y
only through y. [Déppen et al. (1991) demonstrated that non-
adiabatic effects and the effect of the modulation of the
Reynolds stresses in the turbulent convection zone are suc-
cessfully removed from the Y determination by method 1.]
Consequently, it is only in the ionization zones of abundant
elements that Y can be so determined. Of these, it is the sec-
ond ionization zone of helium to which attention is normally
directed. There, the macrophysics is relatively straightfor-
ward, and the influence of Y on y is both direct and substan-
tial. Of course, hydrogen also influences y directly, indeed
more so than helium, but it ionizes in the upper convective
boundary layer in which the fluid dynamics is only poorly
understood. The first ionization of helium is not well separ-
ated from that region. The ionization of other elements pro-
duces only a relatively small contribution to the variation of
y. However, we have discovered that the influence of trace
elements on helium ionization cannot be ignored in the
determination of Y.

It is evident that the principle of any direct seismic deter-
mination of ¥ must be to seek some combination of the data
that is insensitive to the structure of all regions in the Sun
except that in which the second ionization of helium occurs.
To this end various schemes have been devised. The first was

*Moreover, Yale models into which helium settling has been intro-
duced reproduce the seismic data less well (Pinsonneault 1992):
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based on a determination of the sound speed c=(yp/p)!/? by
inverse JWKB asymptotic analysis of high-degree modes,
and comparing a feature of its functional form that is sensi-
tive to Y, expressed in a function W(r), with the results of
similar analyses of the eigenfrequencies of a grid of solar
envelope models (Déappen & Gough 1984, 1986; Dippen et
al. 1988a). This method results from addressing explicitly the
propagation of acoustic waves in the He n ionization zone. In
so doing, it is necessary to eliminate from the frequencies a
contribution that depends on the structure of the outer
reflecting layers of the Sun. According to simple asymptotic
theory, this can be accomplished because, unlike the influ-
ence of ¢ on propagation, the influence of the outer layers
essentially depends on frequency alone (e.g. Gough 1986). In
practice, however, the contribution that is removed, which is
usually represented in terms of a phase factor d(v), does not
come solely from the reflecting layer. There is, in addition, an
oscillatory component of & which results from the break-
down of the asymptotic analysis in the He 1 ionization zone
where the scale of variation of the background state is not
small compared with the oscillation wavelength, and whose
‘period’ (about 0.7 mHz) is related directly to the acoustical
depth of the zone (cf. Gough 1990). Added to this is a non-
monotonic frequency-dependent contribution from the
modulation of the turbulent convective fluxes (Gough 1984c;
Balmforth 1992a,b). Thus the factor & also contains infor-
mation about helium ionization. Indeed, by comparing the
solar @ with values of @& computed from a sequence of
theoretical models (ignoring the turbulent fluxes), Christen-
sen-Dalsgaard & Pérez Herndndez (1991) and Vorontsov et
al. (1991) have obtained values for Y. It is important to
realize that, although the comparisons of both W and & were
motivated by asymptotic analysis, they do not depend
directly on the accuracy of the asymptotics. They are strictly
model calibrations based on eigenfrequencies that have been
calculated numerically. The role of the asymptotic analysis is
solely to provide a suitable procedure for processing the data
to eliminate aspects that have no direct bearing on Y, and
thereby to free the inferences from many of the errors result-
ing from the uncertain assumptions of the theory of stellar
evolution.

The inversion procedures discussed in this paper are
aimed at going even further towards removing unwanted
components from the data. They depend only on the con-
straints (2), the only assumptions about the background state
of the Sun contained within them being that it is in hydro-
static equilibrium with the observed mass and radius and that
the stratification of its density and pressure is not far from
that of the reference model, so that linearization is valid.
(Strictly speaking, the second assumption would not be
essential if the physics were well understood, because in that
case the constraints could in principle be applied iteratively
to provide a sequence of successively improved references.)
The least-squares procedure for applying those constraints is
basically a function-fitting operation, out of which, in the
form in which it is used in method 2, the helium abundance
emerges as a parameter. The procedure is driven by the
requirement that the corrected model has eigenfrequencies
consistent with observation, the particular model that is
chosen having been selected by the regularization. The philo-
sophy behind the optimal averages procedure (method 1) is
quite different, for it is aimed directly at obtaining an average

of Y over a very narrow range of r rather than finding a new
model that fits the data closely. In practice, however, the two
methods are similar, and indeed both provide an average of
Y as a linear combination (4) of the data, though, not sur-
prisingly, the average from method 1 is more tightly confined
to the desired region (see Figs 1a and c). In both methods the
purpose of the regularization is to reduce contamination of
the average by errors in the data, though that goal is sought
explicitly only in method 1; in method 2 it is achieved impli-
citly by restricting the function space containing acceptable
models, which here is based on the requirement that the dif-
ference between the reference model and the Sun is largely
flat. Of course, the regularization in method 1 implicitly
restricts the space of acceptable solutions also. However,
neither regularization imposes the restrictions of the theory
of stellar evolution, and therefore neither contaminates the
measurement with the errors in the physics adopted by that
theory.

We have tested the accuracy with which the two inversion
methods are able to determine the helium abundance, at least
under the condition that the reference model adequately
incorporates the salient physics of mean hydrostatic support,
and provided that adiabatic oscillation theory is sufficient to
describe that aspect of the oscillations that is susceptible
to changes in Y. By inverting artificial data with respect to
the same reference models that we used for inverting solar
data, we have shown that both methods can yield correct
averages of Y in the convection zone, provided that the same
equation of state was used for the proxy Sun and the refer-
ence model. It is important that both models are accurately
in hydrostatic balance, but the details of the stratification are
hardly relevant. It does not matter whether or not the
luminosity of the reference model agrees with that of the
proxy, nor whether or not the reference model is the out-
come of a stellar evolution calculation. The procedures are
thus completely insensitive to nuclear reaction rates and
opacity, and therefore to whether or not the Sun is in thermal
balance; they are insensitive also to the structure of the
atmosphere, the distribution of helium in the core and,
consequently, the presumed age of the Sun. Thus we arrive at
the important practical corollary that it is unnecessary to
have a theoretical model of the Sun that is computed from
stellar evolution theory in order to measure the solar helium
abundance. By concentrating on conditions solely in the
region where helium ionizes, it is possible to divorce the
measurement from any spurious properties elsewhere in the
models, provided that the errors in those properties are small
enough for linearization to be valid. Some indication of how
far linear perturbation theory can be extended is provided by
Fig. 9, which indicates that on the whole the salient aspects
of the constraints (2) are valid even when the relative error in
the reference value of Y is 25 per cent, and when, as can be
seen from Fig. 11, the relative error in u is in some regions
greater than 20 per cent (and the relative density error is as
great as 50 per cent). Therefore, at present, iteration to a
sequence of improved reference models is not necessary.

All direct seismological determinations of Y necessarily
depend crucially on the equation of state. This is because the
coefficients in the adiabatic wave equation are not deter-
mined completely by the hydrostatic stratification of the
equilibrium model. They depend also on the sound speed c,
which is related to p and p via the adiabatic exponent v,
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upon which hydrostatic balance does not explicitly depend;
the other quantities controlling the oscillations, namely the
acoustic cut-off frequency and the buoyancy frequency, are
then determined by ¢ and the functions p and p. Indeed, it is
the very existence of this independent function y that permits
Y to be determined. However, the transition from y to Y is
at present largely a product of theory. In this paper we have
studied inversions with five versions of the equation of state;
perusal of Table 2, and comparison of the entries with the
inversions of solar data by Dappen et al. (1991) and Dziem-

bowski et al. (1991), suggest that the major part of the dis- :

crepancy between the linearized estimates in the previously
published inversions resulted from the use of different
versions of the equation of state. It is difficult to state pre-
cisely how much of the discrepancy came about in this way,
because, as we have confirmed by inverting artificial data
from proxy models with different equations of state, the
fundamental inconsistency that results interferes in a compli-
cated way with other errors in the reference models; never-
theless, it is evident that the contribution to the discrepancy
could have been as much as 0.03. A rather smaller contribu-
tion, about 0.005, resulted from numerical imprecision of the
reference models used by Dippen et al. (1991) (see Christen-
sen-Dalsgaard 1991), and a similar contribution resulted
from the use of different data sets. [It is interesting to record,
in passing, that Dappen et al. (1988a), who used the same
version MHD?2 of the equation of state as did Dziembowski
et al. (1991), obtained Y=0.233+0.003, which is close to
the value reported by Dziembowski et al. and to the corre-
sponding solar values listed here in Table 2. Guzik & Cox
(1992), from raw frequency calibrations, considered a similar
low value of Y to be more nearly consistent with the data.]
Almost all of the remaining difference has probably arisen
from another fundamental inconsistency between the
observations and the theoretical eigenfrequencies, which we
have not isolated. Its presence, which was noticed in both the
previous investigations, was accommodated by Dziembowski
et al. with a non-linear adjustment downwards of typically
0.01 to the linearized estimates 8 Y of 0 Y. The procedure for
making that adjustment, under the assumption that 8Y
vanishes with Y, is itself uncertain by as much as about
0.01, as we have shown in Section 4.6. However, as we have
demonstrated also in Section 4.6, that inconsistency has not
arisen merely from errors in parameters, such as Y itself,
defining the reference models, as Dziembowski et al. origin-
ally believed, since proxy models computed with Y that seem
to deviate from the reference by rather more than does the
Sun maintain the linear law. It appears, therefore, that the
inconsistency arises either from some serious flaw in the
physics assumed in the computation of the reference models
or from systematic observational error.

If the error were in the physics, where could it be? Perhaps
the most obvious possibility is in the equation of state.> We
have found a considerable variation in the value of Y
inferred from artificial seismic data as the relative abund-
ances of heavy elements in the proxy model are varied at
fixed Z. Varying the composition of the reference for a fixed

3Subsequent to this analysis, Dziembowski, Pamyanykh & Sien-
kiewicz (1992) have reported further on the inconsistency of
MHD?2 with the data.
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proxy, which is a more direct analogue of the solar inver-
sions, produces similar results; we have not carried out such
extensive comparisons of that kind, however, because it is
computationally much more expensive. What is, at first sight,
surprising about these results, however, is the high sensitivity
of the outcome of the inversions to the relative heavy-
element abundances, for their ionization in the He 1 ioniza-
tion zone produces only a small contribution to the
thermodynamic function p(o, T, X;). The reason for the
sensitivity is that the inversion, which is based not only on the
value of y but also on its variation, depends principally on
derivatives of the thermodynamic function, which is a more
delicate product of the theory. In this investigation we have
confined attention to the MHD formulation, which is one of
the best, though not necessarily the best, formulation avail-
able. And, naturally, we have put the most emphasis on the
most complete version of it, namely MHDS5. However,
MHDS may not actually have been the most accurate.
Indeed, detailed (unpublished) comparisons of y and its
derivatives produced by MHD and by the recent calculations
of Iglesias & Rogers (see Diappen 1992) reveal what might be
significant differences: in some respects, the equation of state
of Iglesias & Rogers, for the composition of MHDS5, is more
similar to MHD1 (in which the ions of the heavy elements
were assumed to be in the ground states) than it is to MHDS,
a result which might have been expected intuitively from the
form of the Plank-Larkin partition function.

Another possible source of error is in the treatment of the
outer layers of the Sun. Non-adiabatic processes and
Reynolds stresses make significant modifications to the
eigenfrequencies (Christensen-Dalsgaard & Frandsen 1983;
Gough 1984c; Cox et al. 1989; Balmforth 1992a,b). The
direct influence of horizontal inhomogeneity in the upper
convective boundary layer is also substantial (cf. Brown
1984). However, like the non-adiabatic processes and the
influence of Reynolds stresses, it should have been largely
eliminated by the use of F(v), either explicitly in equation
(12) used by method 2 or via the constraints (10) imposed in
method 1. Nevertheless, it is not out of the question that, by
misrepresenting the outer layers, an erroneous relation
between, say, the displacement eigenfunction and the pres-
sure fluctuation could have corrupted the kernels by so much
that they have not been successful in producing a combina-
tion of the data that correctly determines Y. However, the
evidence provided by tests with real and artificial data
reported in this and the earlier papers does at least suggest
that the corruption is not serious.

An interesting difference between the responses of the two
inversion methods to errors in physics is evident in Fig. 13.
When different equations of state are used for the reference
and proxy models, the optimally localized averages, which
concentrate on conditions in the He 1 ionization zone, yield
erroneous estimates of Y, as should be expected. However,
the results of method 2 seem to be approaching the correct
value as the regularization parameter o, increases, irrespec-
tive of the reference equation of state. It appears that, as the
degree of regularization is increased, forcing the solution
u(x) to be closer to the reference and yielding broader
averaging kernels for Y, the local errors in the equation of
state where He is undergoing its second ionization are first
partially cancelled by compensating errors from elsewhere.
However, that trend does not continue indefinitely. When a,
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is increased beyond 106, contamination from the errors in u
dominate, and the inferred values of Y diverge.

Finally, we comment on the value of the solar Y. As we
have already noted, the inversions of solar data illustrated in
Fig. 15 bear a qualitative resemblance to those in Fig. 13. In
particular, the confluence of the least-squares inversions
from different equations of state as a, increases is again
exhibited. However, it must be realized that the nature of the
inconsistency between the solar data and the eigenfre-
quencies of the reference model might be quite different
from that resulting from our use of different MHD formula-
tions of the equation of state, and therefore the confluence of
the inversions could be misleading. For this reason, we
refrain from conjecturing on the magnitude of the uncer-
tainty in the estimates of the value of Y.

7 CONCLUSIONS

We have compared properties of the methods that Déappen et
al. (1991) and Dziembowski et al. (1991) used to infer the
helium abundance Y in the solar convection zone. Both
methods are based on an inversion of linearized integral
constraints (2) imposed by the differences between solar
p-mode frequencies and the eigenfrequencies of theoretical
reference models of the Sun. When, using the same reference
model, the two methods are each applied to the same arti-
ficial data obtained from another theoretical solar model
computed with the same equation of state as that used for the
reference, there seems to be little to choose between the
results. Some examples can readily be compared in Table 2
and Fig. 9. One can also judge from Fig. 9 the accuracy of the
linearization leading to equation (2). In particular, there is
little justification for the non-linear modification that Dziem-
bowski et al. made to their linear estimates. This modifica-
tion was responsible for a substantial fraction of the
difference between the published abundance determinations.
A similar contribution to the difference came from a com-
bination of a small error in the computation of hydrostatic
support in the reference models used by Déppen et al., which
we have now corrected, and an inconsistency between y and
its partial derivatives with respect to p, o and Y. The use of
different mode sets appears to have contributed negligibly to
the discrepancy.

The principal difference, however, between the estimates

of the solar Y obtained by Dappen et al. and Dziembowski et .

al. results from their use of different equations of state in the
reference models. Both equations were based on the MHD
formulation, but they differed in the approximate treatments
of the heavy elements. We have now computed new tables in
which the heavy elements are treated consistently within the
MHD formalism, and we have compared their seismic
properties with the earlier versions; the version that had been
used by Dziembowski et al. is the closer.

When inconsistent data are used, such as eigenfrequencies
of a model computed with a different equation of state from
that used for the reference model, the two methods respond
somewhat differently. We cannot judge from the inversions
alone which method is the more accurate.

Within the framework of standard solar theory, it is only
hydrostatic support and the equation of state that need to be
represented accurately by the reference model, particularly if
optimally localized averaging is used. The reference model

must have the correct solar mass and radius, but it need not
have the correct luminosity, nor be the product of an evolu-
tion calculation. The details of the hydrostatic stratification
are hardly relevant, however; what really matters is simply
that the hydrostatic equation be satisfied. This is exemplified
by the use of a chemically homogeneous model for the refer-
ence, through which the distributions of density and sound
speed are rather different from those in the Sun. As can be
seen in Table 2, both inversion methods recover the helium
abundance in the convection zone of a proxy model reason-
ably well, the error in the optimally localized average being
only 0.003. Thus the inversions are not susceptible to most
of the uncertain assumptions of stellar evolution theory, nor
to the values of the nuclear reaction rates and opacity upon
which the calibration of standard solar models crucially
depends.

Inversions using the best of our equations of state cannot
be made to explain the solar data to the same precision as
they do the eigenfrequencies of theoretical models computed
using the same physics. The residual discrepancy could be
observational error or an error in the physics of the reference
model, such as the equation of state. Inversions such as those
listed in Table 2 suggest a value for the helium abundance Y
in the solar convection zone of approximately 0.232 + 0.006.
The uncertainty is formal and was estimated from the spread
in results obtained by the different methods using various
reference models, ignoring the last entry in Table 2. It takes
no account of the systematic errors resulting from misrepre-
senting the physics in the reference model, and particularly
from errors in the equation of state. Until an understanding
of those errors is established, the true reliability of the esti-
mate cannot be judged.
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