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ABSTRACT

The problem of linear, nonradial pulsations in spherical stellar models is reconsidered using second-order
asymptotic expansions. Acoustic modes of high radial order and low degree are investigated without making
use of the so-called Cowling approximation. Detailed solutions are obtained for these modes. Comparison is
made between these new results and those obtained when Cowling’s approximation has been used. The con-
nection between Olver’s asymptotic theory and the so-called plane-wave method is also discussed.

Subject headings: stars: pulsation — Sun: oscillations — wave motions

I. INTRODUCTION

Asymptotic theory has proved useful in the analysis and interpretation of the many acoustic modes of oscillation that are
observed at the surface of the Sun (e.g., Jiménez et al. 1988; Duvall et al. 1988). To calculate these modes, one must solve the
fourth-order system of differential equations that governs the linear, adiabatic oscillations of a self-gravitating sphere in hydrostatic
equilibrium. As was originally pointed out by Cowling (1941), however, for modes of high radial order or high degree the Eulerian
perturbation in the gravitational potential could be neglected without significantly modifying the frequencies. This is the so-called
Cowling approximation, which reduces the order of the system of differential equations from four to two. Thence, by making use of
this approximation, one can easily apply Olver’s (1974) theory to obtain second-order asymptotic solutions for the acoustic modes
of high radial order and low degree (Tassoul 1980; Smeyers and Tassoul 1987; hereafter T80 and ST87, respectively).

Yet, recent work (e.g., Gabriel 1989) seems to indicate that Cowling’s approximation may not be adequate to discuss the solar
acoustic modes. This is the reason why I shall present in this paper second-order asymptotic solutions that are based on the full
fourth-order system of differential equations, thus without making use of Cowling’s approximation. Not unexpectedly, these new
solutions for the nonradial acoustic modes generalize the second-order asymptotic solutions that were obtained for the radial
pulsations (Tassoul and Tassoul 1968, hereafter TT68). However, since §§ III-V present highly technical matters, I recommend that
one start the first reading of this paper with § VI, which can be read without going through all the mathematics. This final section
also presents a detailed comparison between Olver’s asymptotic theory and the so-called plane-wave approach.

II. BASIC EQUATIONS

We restrict ourselves to a star in hydrostatic equilibrium, without rotation or magnetic field. The linearized equations governing
the nonradial, adiabatic pulsations of such an object have been established by Pekeris (1938). Because these equations are linear, one
can search for normal-mode solutions. In other words, one may assume that the time dependence of the perturbations is given by a
factor exp (iot). Moreover, the dependence on the angular variables (6, ¢) can be separated from that on the radial variable r by
means of spherical harmonics Y7". For example, the r and 6 components of the Lagrangian displacement & are written as follows:

clr, 6, ¢, 1) = LY T(6, ) exp (io?) ,

0
66("’ 07 () t) = n(r) % Y;n(o’ (0) exXp (iO't) . (1)

If one inserts this separation of variables into the equations of motion, of continuity, of adiabaticity, and in Poisson’s equation, one
obtains a fourth-order differential system involving, besides the Lagrangian displacement, the Eulerian perturbations in the pressure
OP, in the density dp, and in the gravitational potential 6®. If one defines

) 1d I+1
X=d1v§=—2—(r2€)—u'l’ @
r* dr r
these equations can be combined to give

dé¢  d*x ax R K,
— 4+ — — K;i+—=|X= 3
Kldr+dr2+K2dr+<a<p+ 3+aZX 0, (3)

d*’¢ 44t 2-A dX (2 AN?c?
—_—t == —_—— = === = 4
dar* rdr r? ¢ dr r ot g X =0, @)
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where we have introduced the following quantities

¢=$=CL2, )
(e
K_ci‘fdi+%‘fi—”+3 ™
T RT R T
Ke=n Y )

and where A = (I + 1), g is gravity, c is the sound speed, N is the Brunt-Viisili frequency, and I, is one of the generalized adiabatic
coefficients.

Let us first recall a result that will be useful later: the “ horizontal component ” 5 of the Lagrangian displacement is related to 6P,
od, ¢, and X by

1
r'1=p(5(1> +7)=;(ad>+gc—c2X). (10)

Note also that for the homogeneous model, gravity is proportional to r, implying the vanishing of K;. Equation (3) is then
decoupled from equation (4) (since it involves the function X only) and, as a result, ¢ is thus the eigenvalue of a second-order
problem. In the case of more complex configurations, the problem is a genuine fourth-order problem.

To be physically acceptable, the solution of equations (3) and (4) has to satisfy the usual regularity boundary conditions: £ and X
have to be regular everywhere, and in particular, at the center (r = 0) and at the surface (r = R) of the star. (Needless to say, we
assume here the so-called zero-boundary conditions, i.e., we assume that the pressure and the density vanish at the surface.) In
addition, because Poisson’s equation has been used to eliminate the perturbation in the gravitational potential, one must also
express the continuity of gravity across the surface of the star, i.e.,

4
dr

In general, since we are considering configurations for which p vanishes at the surface, the right-hand side of this equation may be
neglected. Furthermore, it is also worth noticing that, with the help of equations (2) and (10), condition (11) can be easily translated
into a condition on £ and X. There is no additional constant of integration involved.

The elimination of ¢ between equations (3) and (4), although possible, leads to an extremely cumbersome equation that has the
following structure

oD
5d)+(l+1)—R—=—4nGPC, at r=R. (11)

1
PX + 079X+ AX =0, (12)

where 2, 2, and Z are differential operators, 2 being of the fourth order, and 2 and £ being of the second order. Note, however,
that these three operators are independent of 2. As pointed out by Ledoux and Walraven (1958), this is the only fourth-order
differential equation that can be derived from the basic equations and which is free of variable singularities.

. TENTATIVE SOLUTION OF EQUATION (12)

The singular points of equation (12) are r = 0 and r = R. Near r = 0, this equation reduces to

X 44dX ., 2A X 2w?dX A? AN =2
F+;—dr_3 < _r2> dr2+ r dr+ T2 r* X =0, (13)
where
2 2
2 _ _al AN 14
@ <F1P+ "20'2>r=0. a4

(For convenience, we have assumed N2 > 0, so that w is always real, whether o2 is large or small. For high enough p-modes, the sign
of N2 is irrelevant, since the second term in equation (14) can then be assumed to be small with respect to the first one.) Linearly
independent solutions of equation (13) are the following

X=r, roitt, 7-1/2-]1“/2((”") s r_1/2Y1+1/2(wr) s (15)

-1-1

where J and Y are the standard Bessel functions. Of course, the singular solutions (i.e., r andr~"2Y,,,,) have to be discarded.
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Near r = R, we let
x=R-—r, (16)

2
? = lim l:(R - r)(% + ’:f]:)] . 17

r—-R r

and we define, instead of equation (14),

Obviously, we assume very simple conditions near the surface of the star. As is usual in this kind of analysis, we assume that the
surface of the star can be assimilated to a nearly polytropic atmosphere of index n. Close to the surface thus, equation (12) reduces to

d4_X n+4dX o?d’X

L S
dx* x do T x a2 (18)

whose general solution is a combination of the following four
X=1, x, x®Y2]_ Qwx'?), x "*tV2y  (wx'?). (19)

Here again only the regular solutions have to be retained.

These results suggest that, for large (positive) values of 62, the asymptotic expansion for X can be written as the sum of two parts:
a first one in which one expresses X as a straightforward series in 1/62 (generalizing the power-like solutions in equations [15] and
[19]) and a second one for which one adapts the method that Olver (1974) devised for second-order differential equations with a
large parameter.

a) The Nonoscillating Part
To approximate this part of the eigenfunction, we look for solutions of the form

N
X(r, 0) = i:ZO % Xir) . (20)
After inserting this series into equation (12) and identifying the terms in the same powers of a2, we find the conditions
2X,=0, (21
X, = —-PX,_, —RX,_, (22)
(i > 0; by convention, a quantity with a negative index is zero). Two particular solutions of equation (21) are the following
Xo=(""? and r-'*)(‘i—“r’ - g) : 23)

Obviously, only the first one is acceptable. Thence, in principle, the next X;’s can be derived: they are the solution of successive
inhomogeneous second-order differential equations (22). Note also that (dg/dr —g/r) is O(r?); so that X, is always regular, whatever
the value of 1.

To complete the solution, we must evaluate the corresponding solution for ¢. Expanding ¢ in the same manner as in equation (20)
and inserting this expansion into equation (3) or (4), we find

eo—2 el Lo (24)
T2l-1) o2 ‘
Let us note here that, for [ = 0, £ is not regular; therefore this solution must be discarded (together with the corresponding X,). On
the other hand, since the amplitude in the partial solutions (23) and (24) are not specified, in the case when [ = 1 the only acceptable
solution is X, = 0 (and X = 0, as well) and ¢ = constant. (In fact, this is probably the reason why it has been prematurely concluded
that the I = 1 p-modes had to be disregarded because they consisted only in a lateral displacement of the star as a whole.)
Expressions (23) and (24) are reminiscent of the f~modes in the homogeneous model, for which we have indeed X = 0 and
& oc '~ 1. In what follows, we will therefore denote this part of the solution as the f-like part. (Obviously, there is no such part for the
radial pulsations!)

b) The Oscillating Part
The third solutions in equations (15) and (19) suggest, on the other hand, that in order to derive another type of expansion of the
solution of equation (12), one proceeds along the same lines as in T80 and ST87. We will thus refer to this part of the solution as the
p-like part. In this approach, thus, one divides the radius into two domains, each one of which contains only one “turning” point
(here a singularity). We thus have an inner domain extending outward from the center, and an outer domain extending inward from
the surface. In each domain, one introduces new dependent and independent variables. The independent variable u is chosen in such
a way that it is proportional either to r (near r = 0) or to x (near r = R). We then introduce a new dependent variable by writing

X(r, o) = h(r)X,(u, o) . (25)
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For the moment, the function h(r) is arbitrary. We also assume that X, can be written as

X, 0)= Z': 1‘2(2114) Py(u, o) + ;13 2‘: %.g ___aPla(r %) )
with
P, = u”sz(’_ 2 au”’“) , (26)
+2
where v is again arbitrary; j = 0 in the inner domain, and j = — 1 in the outer domain. (In what follows we will use the short-hand

notation 4 when we actually mean the whole series of the 4;/a%"s; this applies also to B and similar series that will be introduced
later.) These changes of variables are inserted into equation (12), together with formal solution (26). By using Bessel differential
equation, we can express the resulting expression in terms of P, and its first derivative. Because these two functions are linearly
independent, we thus obtain two conditions for the two unknown series 4 and B. Now the function h(r) is determined by requiring

that the first term in series 4 (i.e., A,) be a constant. Thus we find
hir) =r~'p~112p¥% @7

Next we determine the index v of the Bessel function in such a way that each term in series 4 and B are of the same order (with
respect to u) near u = 0. (Obviously, this value of v has to be the same as in eqs. [15] or [19].) In practice, the two recurrence
relations between the individual A;’s and B;’s are so cumbersome that practically nothing can be derived. For example, one cannot
be assured that all 4;’s are O(1). Indeed, even though h(r) is chosen so that 4, is O(1), the expression for A, contains terms that are
O(u~*); if v is suitably chosen one can suppress this singularity, but we are still left with terms that are O(u~2), and these cannot be
shown to be regular!

It thus seems more promising to use equations (3) and (4), rather than equation (12). The scanty information we gained in
equations (26) and (27) will nevertheless prove very helpful in the next sections.

IV. PARTIAL SOLUTION OF SYSTEM (3)—4)

As we have seen in the previous section, the f~part of the solution does not present any practical problem. We thus turn our
attention to the p-part of the solution.

As we have recalled, the method involves first the need to subdivide the radius in an inner and an outer domain. In each domain
one then performs changes of dependent and independent variables. We thus write

X =h(NX,(z,0), and {=[f{r)(z 0). (28)

(To simplify the notation we will often omit the index “in” or “out”: either when it is obvious from the context, or when it is
immaterial.) We will depart from the conventional approach in two minor respects. A moment of reflection will convince the reader
that these modifications are of no consequence. In particular, we will choose the independent variable z as follows

r R
zm=J<p”2dr; zo..(=j @'dr. 29
0 r

Obviously, z;, satisfies the requirement that z oc r as r — 0. This is not true for z,,,! However, the present choice of independent
variable is supported by the following considerations. First, past experience (T80; ST87) has shown that it is indeed (o) that is the
argument of the Bessel functions, in spite of the use of the more conventional variable. Second, because the nonstandard variable z,,,
is related to the standard variable u, (see T80, eq. [57]) by u, = (2,./2)?, any regular function A(u,) will also be regular if considered a
function of z_,,! (In this connection let us recall that the asymptotic approximation to the radial pulsations has indeed been studied
in terms of z,,,,, instead of u,.) As far as the functions h(r) and f{r) are concerned, we will define h(r) as in equation (27), and we will
also choose fi(r) in such a way that

d
h(r) = fr) d—f . (30)

This last definition will later prove convenient, but is obviously not essential. Indeed, since z is a function of r only, if f;(r) and f5(z)
are two arbitrary functions, their product may also be considered a function of r.
We next assume that X; and &, can be formally written as follows

© Afz) 1 2 Bz)

X, =Y pr Pi(z, 0) + p T P,(z, 0),
i=0 i=0
e C{2) 1 & D{(2)
E=Y peT Pz, 0) + p Y peT Py(z, 0) . (31)
i=0 i=0
The functions P, and P, are defined as
P, = Zl/zJa—l/z(UZ) s P, = 21/2-]”1/2(0'2) s (32)
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and satisfy the following recurrence relations
d a
—S=-Pi—oP, —E=0P,——P,. (33)

(Compare with eq. [26]. The present form is preferred because, as we will see later, in the case when P, is the first approximation to
X,, P, is the first approximation to &,.) In practice, the series in the formal solution (31) are limited to the first few terms.

We insert these transformations into equations (3) and (4) and use the recurrence relations (33) between P; and P, and their
derivatives. Again, because these two functions are linearly independent, equation (3) leads to the two sets of equations

2 +1
i1 =B = Byt [“‘“ZZ n La]Bi +LoBiy + Ll[—cm + D+ (— ~+ LO>D,] =0; (34)
2 -1
~2B = Ayt Ay [a(azz )4 Ls]Ai +LyAy + Ll[D,- +Ciut (g + Lo)Ci] -0, (35)
where we have introduced the following quantities:
1/ 1p 1¢ 1
L == - < - - — bl
° z’< 2p+4q) r) (36)
2
Ly=-2¢+ Tg > 37
1[1p” 3p% 1p 1¢ 5¢2 A 1 ¢
—|lz=——-=+-=—-—+ == —-5+290{-+=) ]|, 38
3 z’2|:2p 4p2+rp 4<p+16(p 2 oo r+g (38)
1 AN?
L,= i (39)

(A prime denotes a derivative with respect to r, while an index z denotes a derivative with respect to z.) These relations are valid for
any (positive or negative) value of i: we define quantities with negative subscripts to be zero. (This also applies to the other relations
involving individual 4;, B;, ...). In the same way, equation (4) is equivalent to the following two sets of conditions:

a 2a aa+1) a
Diyy=Aisq _Bi.z + (;— L5>Bi—L6Bi—1 _2Ci+1,z —L;Ciyq +Di.zz + <—7 + L7)Di,z +|: ( 22 )_;L7 +L8:|Di =0;

(40)
a 2a aa—1) a
Ciy1=—-B—4,.+ —;-Ls A;— L¢A;_y +2D;, + L;D; + C; ., + 7+L7 Ci.+ 2 +;L7+Ls C;=0, (41
where
1/ 1p 3¢ 1
Li==(--24+2% 42 4
3 z’< 2p+4(p+r>’ (42)
1 AN?
Le= — =22 4
6 z,rzw (3)
1 / 2
Lod(2a82), "
z p @ r
1[ 107 3p2 1p 1¢ 3¢2 lgp 1d A
S LA L ST A S . L A e ) 4
Ls z’2|: 2p+4p2 rp+4(p 16 @2 4(pp+2r(p r? “43)

The expressions (34), (35), (40), and (41) can be considered as recurrence relations between A;, B;, C;, D;. A glance at these
equations implies the following order: relations (41), (34), (40), and (35) will determine C;, 4;, D;, and B, respectively. Obviously, C,,
in the notation used in equation (31), always vanishes. Next, because equation (34) is a differential one, one is at liberty to assume A4,
to vanish or not. Of course, if one chooses 4, = 0, then one cannot assume later that B, also vanishes: we are considering linear
perturbations, so that the amplitudes are arbitrary.

To proceed any further, we now particularize these relations in each of the two domains defined before. In order to facilitate
future discussion, we give in Table 1, the behavior, near the center and the surface, of the many known functions that appear in
equations (34), (35), (40), and (41).

a) Solution in the Inner Region

From § III, we know that the dominant solution for X, involves J, ;,. On the other hand, since we want to recover the results of
the radial pulsations (TT68), we expect the dominant solution for &, to be J,, 5,,. We thus let a = [ + 1 in relations (31)~35), and
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TABLE 1
BEHAVIOR OF VARIOUS FUNCTIONS NEAR THE SINGULAR POINTS®

Defined in
Function Equation: rx~0 x=(R-r=0
@n or) 0(x'?)
1+ 0(z%)] —2x[1 + 0(z%)]
(36) —1/z + 0(z) —(n+ 1/2)/z + O(2)
(37 0(z%) o(1)
(38) —A/z2 + 0(1) —(n + 1/2)n + 3/2)/z* + O(1)
39) o(1) o(1
(40) 1/z + O(2) —(n+3/2)/z + 0(2)
(41) 0(1/z) 0(2)
42) 2/z + 0(2) —2(n + 1)/z + 0(2)
43) —A/z22 + 0(1) (n + 1/2)n + 5/2)/z% + O(1)
(59) —1/z + 0(2) —(n—1/2)/z + O(2)
(46) —A/r* +0(1) —(n + 1/2Xn + 3/2)/4x* + 0(1)
49) —(A +2)/r* +0(1) —(n + 1/2)n — 1/2)/4x2 + 0(1)

A=+ 1).

(40){42). The first nonvanishing coefficient is 4,. From equation (34), we conclude that A4, is indeed a constant. Obviously, there is
no loss of generality in letting 4, = 1. From equation (40), one then derives D, = A, = 1. (Of course, such a simple solution rests
upon the particular choice for f«(r); see equation [30].) Equation (35) can then be integrated to give

21+ 1 W,
_zBo=j [( i )+—,2‘]dz, (46)
b z z
where we have defined
1p" 3p2 19 1¢ 5¢> A 4
W, =2l +Ly==2—2L -2 "¢ 29 B, %, 47
1= 2Ly + Ly) 2p 4p2+rp 49 16 ¢* r? r 99 @7

From the behavior of z with respect to r near the center (see Table 1), it is obvious that the integrand in equation (46) is regular, and
thus that B, is O(z). Of course, this last statement is true only because of the lower bound in the integral defining B,. (In an
analogous problem, ST87 showed explicitly that it is essential that B, vanishes at z = 0. The same proof applies here.) Finally, C,
may be derived from equation (41). We find

1 1
C1=_;_BO+(L7_L5_;>‘ (48)

Here again, from the definitions of L and L,, it is obvious that the term in parenthesis is regular. We thus recover the result that C,
is regular in the radial case. Since we want to compare the present results with those of TT68 (the radial case) which involve the
function ¢ only, we eliminate B, from equation (47). By using the definition of B, and integrating by parts, one can show thatC, can
also be written as

21 AN+2 W,
2c1=——+j( b +72>dz, (49)
z o\ Z z
where the quantity W, is defined as
Lp" 1p? 1¢gp 1¢ T¢g> 1¢ 1p 4 A+2
Wy=2[Li+Ly+2L,—Ls),J= —2—+-"S+-——4+-———" =1 -4 gy : 50
»=2"[Ly + Ly + 2(L, 5),2] 2p+4p2+2(pp+4(p l6q;2 rq)+rp+rg¢ 2 (50)

This quantity is the same as the quantity h(x) introduced in TT68 (eq. [40]), except of course for the term in A.

In principle, the next coefficients in the series can be evaluated. Obviously, the expressions for those coefficients become rapidly
cumbersome. With the help of Table 1, it can be shown however that each term in their respective series have the same behavior near
z = 0. We proceed by recurrent induction. We assume that up to a given value of i, all 4;’s and all D,’s are even and O(1), that all B;’s
are odd and O(z), and that all C,’s are odd and O(1/z). We have to show that this is also true for the next value of i. For example, since
a =1+ 1 and with the help of Table 1, it can be shown that in equation (41), which determines C,, ,, the first few terms are either
O(z) and or O(1/z). However, the terms involving C; and its derivatives, i.e.,

20+ 1 I+ 1 I+1
C,-'zz+|: ( :‘ )+L7:|Ci'z+[( X )+TL7+L8:|C,~, (51)

are each O(z ~3). On the other hand, they may also be written as

Ly +1 (g N L7>(zc,-),z +1 [’(’ DL L Lg](zci) . (52
VA z z VA Z z
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Because (zC)) is regular and even, and from Table 1, it is obvious that each of the three terms is now O(1/z) near z = 0. Hence the
conclusion that C;, , is indeed O(1/z), as were the preceding ones. An analogous manipulation (noting that B;/z is even and regular)
can be used to prove that 4;,, = O(1), D,;,, = O(1),and B;,,; = O(z2).

A final comment concerns the behavior of C near z = 0. The fact that C is O(1/z) does not imply that the radial displacement ¢ is
not finite at the origin. Indeed, if I > 1 the term CP, in equation (31) is O(1/z)O(z'* ). We thus recover the well known result that
when | > 1, & oc '~ near the center. What is more worthy of note is that the first nontrivial term in the expansion for &,, ie.,
D, P, /o, is not the dominant term near z = 0. In fact, it can be shown that in this neighborhood the ratio of C,P,/o? (the next term)
to D, P,/o is equal to —I(2] + 3)/(o?z?). This behavior was already apparent in the results obtained in the context of Cowling’s
approximation (see T80 and ST87), and it is certainly related to the presence of a variable singularity in the differential equation
which determines £. We are thus led to the conclusion that in order to achieve the same degree of accuracy in the eigenfunctions as
in the eigenfrequencies, one must retain the same number of terms in each series. In other words, only even-order asymptotic
approximations are satisfactory in every respect.

b) Solution in the Outer Region

From § III, we know that the dominant solution for X, involves J,, ;. On the other hand, from the results of the radial pulsations
(TT68), we expect the dominant solution for &, to be J,. We thus let a = n + 1/2 in relations (32), (34), (35), (40), and (41). Since we
want the first approximation for X, to contain J,,,, we must let 4, =0. As a result, C, and D, also vanish. Thus, the first
nonvanishing coefficient is B,. By using equation (34), we derive that B, is indeed a constant. Again, there is no loss of generality in
letting B, = 1. Equation (41) immediately implies that C;, = — B, = — 1. Equation (34) can then be integrated to give

2A‘=r [w%ﬂ@, (53)

o 4z

where W, has been defined in equation (47). From Table 1, it is obvious that the integrand in equation (53) is regular, and thus that
A, is O(2). Of course, this last conclusion is true because of the lower bound of integration. Finally, D; may be derived from equation
(40). We find

2+ 1
D1=A1+<L7—L5+ "22 ) (54)

Here again, because of the behavior of Ls and L, near the surface (see Table 1), it is obvious that the term in parenthesis is regular.
Hence D, is regular and O(z). By using definition (53) and integrating by parts, we can also write

2D, = fz [M + %]dz . (55)

o 422 z/2

The quantity W, has already been defined in equation (50).

To be consistent, it remains to show that all B;’s and C;’s are O(1), and that all 4;s and D;’s are O(z). Here again, when solving
equation (35) for B;, the lower bound of integration is arbitrary. (A different lower bound corresponds to a different amplitude.) On
the other hand, when solving equation (34) for 4, , ,, it is imperative that the lower bound in the integral vanishes. As a result, it can
be shown that B; and C; are even functions and that A4; and D; are odd in z. By using the same recurrent induction'reasoning as
before, we can show that C;, , is indeed O(1), and that A, , is O(z). However, when it comes to D, ;, we conclude that D, ; cannot
be O(z) unless

2
Cio\ +B; + 7" D, = 0(z?) (56)

(i = 1). It is not obvious whether this is true or not. However, we know that for the radial pulsations, all C;’s and D,’s are regular (see
TT68; in that paper our D, was denoted C,.) Furthermore, we do not expect terms that vanish when ! = 0 to play a significant role
in the outer solution. Equation (2) thus suggests that we use # as an intermediate variable.

We therefore express n in a manner analogous to equations (28) and (31) and introduce two new functions E and F, in such a way
that

n= f,,(EP1 + % FP2> with  f, = h()/(rz?) . (57)
Equation (2) then gives

-D,= —A,-+C,~,z+<L7—L5+g>C,~—ﬁE,-; (58)

Civy = —B,~+D,~,,+<L7—L5 —3)1),.—;,’2\7&. (59)

We have not replaced a by n + 1/2 since these relations can also be used to compute # in the inner domain. We insert these relations
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into equations (38) and (39) and we observe that

d 1A
Ly — o (Ly = Ls) = Ls(Ly = Lg) = — =5 5. (60)
After dividing by a common factor A = I(I + 1) we obtain two new sets of recurrence relations
NZ
—Eiy = _Fi,z+(g+L9>Fi—_7_Bi—1+Di; (61)
z Z'g
N2
F,= —E,-_,+<—g+L9>E,-——;—Ai_1+Ci; (62)
z Z'g
where we have defined
1¢ 1
= -). 63
bo= <4<p+2p+r> ©)
In a more transparent way, this last set of relations may be seen as a consequence of the following equation
1 N2
w1 SNy, 64)

r r g rg

Incidentally it should be noted that in the case of radial pulsations, although the horizontal component &, of the Lagrangian
displacement vanishes, from equation (1) there is no such constraint on #.
In the outer domain, we thus have the six sets of recurrence relations (34), (35), (58), (59), (61), and (62) to determine the six

functions A4, B, C, D, E, and F. It is easy to show that if we assume B, = 1, we will also haveC, = —By = —1,F, =C, = —1, 4,
given by equation (50), D, given by equation (52), E; = 0, and
2n+ 1 N? 2 1
2=, +Ly———D;=—-A, —=go. (65)
zg

The second equality follows from equation (54). Obviously, E, is O(1/z).

It is now a simple matter to show that B, C, and F are O(1), that A4 is O(z), and that E is O(1/z). The proof follows the same lines as
described before. Here we have to use the fact that the already known A;’s and E;’s are such that (4,/z) and (E;z) are even and regular
functions of z. For example, expression (62) can also be written as

2

-1 N
= 4 L9>E,- A+ (66)
zg

F,= —li(zE,)+<

We have thus constructed genuine asymptotic expansions for X, £, and #.

V. FULL SOLUTION OF EQUATIONS (3) AND (4)

The results we have obtained so far can be summarized as follows.
In the inner domain the general solution of equations (3) and (4) is

1 1 1
X =k,2ll— 1)"1_2(9’ - g)[l + O(?):l + kin r_lp_l/z(p3/¢ziln/2[']l+1/2 + s B, J1+3/2][1 + 0(?)] 5 (67)
1 1 1
é = kfazlrlhl[l + 0(;)] + kinr_l 1/2(p1/4 1/2[ J1+3/2 + C Jl+1/2:|[1 + 0<'GTZ">} . (68)

The argument of the Bessel functions is (6z;,). B, and C, are functions of z;; and are defined in equations (46) and (48). The arbitrary
constants k, and k;, may each depend on a2. Of course, since we are considering lmear pulsations, the global amplitudes are
arbitrary, so that k/k;, is the relevant quantity; this last quantity may also depend on ¢2. For completeness, let us also quote the
solution for n. We have

1 - - _ 1 1 1 1
n= kf”2r1|:1 + 0(?)] + kit ?p V2 1/423,./2[" o2 Jivrp + P (‘Bo + 7 !]‘P)Jus/z:":l + 0<;)] . (69)

On the other hand, the general solution in the outer domain is given by

1
X =kg21l - 1)r"2<g’ - %)I:l + 0<%>] + koy r " 1p 2034, j’z[aJ,,H + A, J :II:I + 0<—a—2>:| ; (70)
2701 1 ~1p= 12145102 1 1 .
E=kealr 1+OF — kot 'p 0 —J,+ - DJ,,Jr1 1+O? ; (71)
2. 1 -2 —-1/2  —1/4_1/2 1 1 1
'7=ka" 1+0 ;E +koulr P @ Zout _—Jn+l+ n 1+0 (72)
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Here the argument of the Bessel functions is (6z,,,), and the functions 4,, D,, and E,, which can be considered as functions of z
are defined by equations (53), (54), and (65), respectively.

Before proceeding any further, let us compare solutions (67) and (70) with the limiting solutions (15) and (19). The inner solution is
compatible with equation (15): one part of the solution is proportional to r and the other one is oscillating with the correct
“period ” (inasmuch as one can define a period in a Bessel function). As far as the outer solution is concerned, equation (19) has
revealed, besides the oscillating solution, two polynomial solutions. Only one is present in solution (70). The other one, which is
proportional to r '~ 3 (see eq. [23]), has been discarded since it is not regular at the center. In this connection, let us note that the
same constant k, has been used in the inner and the outer solutions: this part of the solution does not require a different treatment
near the center and near the surface.

Because some of the solutions obtained so far are not valid all the way from the center to the surface, we have to match them in
their common domain of validity. If we were to solve equation (12) numerically, we would follow up the solutions in equations (15)
and (19). From this point of view, there would be five arbitrary constants involved. We therefore need five conditions to close the
problem. Since equation (12) is a fourth-order differential equation we must thus express the continuity of X and its first three
derivatives at an intermediary point. The fifth condition is condition (11) on the perturbation of the gravitational potential across
the surface. Parenthetically note that since we solved equations (3) and (4) instead of equation (12), the four conditions on X and its
first three derivatives may be replaced by the requirement that X and & together with their first derivative be continuous at the
junction point.

Manifestly, in solutions (67)72) only three independent constants are involved. We still have five conditions to satisfy. Therefore,
we will have to show that two of these conditions are redundant, and, hence, that the assumptions made in solutions (67)(72) were
legitimate. Incidentally note that the f~part of the solution requires no matching since it is valid throughout the star.

Thus, we see the problem as follows: the matching between the inner and outer solutions will determine the possible values of &
(the solution of an eigenvalue problem) whereas the requirement that gravity be continuous across the perturbed surface of the star
will determine the importance of the f~part of the solution with respect to the p-part.

a) Matching of X

As we mentioned before, we only have to match the oscillating part of X. In the notation of equation (25), we thus have to express
that

out>

d d
(hX )in = (X Dout 5 5 (hX 1)in = E (hX Jout (73)
at an arbitrary chosen point in the common domain of validity of the inner and outer solutions. Because h(in) = h(out), and because
dz,,/dr = —dz,,/dr = @'/, these two conditions can be translated immediately into the following
. ax, dx,
X =X ; — ) = —\— . 74
i =xouy (B2) < -(H) (74

If the junction point is not “too” close to the center and to the surface, oz;, and oz,,, are large compared to 1, and we may use
Hankel’s asymptotic expansions for Bessel functions (fixed index and 6z — o0 ; see Abramowitz and Stegun 1970). In agreement with
the number of terms kept in solutions (67) and (70), we will only keep the first two terms in this expansion: terms proportional to
1/6* are neglected before terms independent of 6. We thus find the condition

atanI:aZ—E<n+l+l>j|=7}+0<1>, (75)
2 2 o

where
R
d
Z=zin+zout=J‘ _r’ (76)
b C
l 1 2 1)2 3
o= MED _@ntD2nt3 o o)~ 24,(0un . (77)

z 4z,

Reverting to the original definitions (46) and (53), one can also write
1 2n+ 1)2n+ 3 amjl+1) W ol (2n 4+ 1)(2n + 3) W,
2T = g+ @n+12n+ )_j [‘("35_)"'—1]‘12—'[ [( n+ 1)(2n + )+ﬁ]dz.
(]

z 4z z'? 422

(78)

in out 0

As in similar problems (see TT68 and T80), it can be shown that this expression does not depend on the chosen junction point. Note
also that in each integrand the first term cancels out the singularity from the second term (see Table 1).

b) Matching of &

One proceeds along the same lines as for the matching of X. Here, however, we have f,(in) = —f (out), because f; contains the
factor z’ (see eq. [30]). The conditions resulting from the matching of £ are thus
. d¢ dé
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By using the asymptotic expansions of the Bessel functions and retaining only terms that differ by less than two orders of magnitude

in 6, we obtain condition (75), where T, is now defined as

10+ @n+DEn—1)

2T = 4z

— 2C,(in) — 2D,(out) . (80)

4 out

By using definitions (48) and (54) for C,(in) and D,(out) and by noting that Ls(in) = — L(out), it can be shown that this expression is
identical to expression (77). On the other hand, we could have used the equivalent definitions (49) and (55) to eliminate C,(in) and

D, (out). The result is

2T;= —

M+1D+2 @u+12n—1) J [1(1 +h+2 :—f/j-]dz B j |:(2n +hRn-1) %>dz . @)

Zin 4z z? 422
As in definition (78), both integrands are regular (see Table 1). We have thus two apparently different expressions for 7; although
they are strictly equivalent.
We have thus shown that four of the conditions actually reduce to two.

out 0 (0

¢) Boundary Condition on 6@
It only remains to express the continuity of gravity across the perturbed surface of the star. From equation (10) we have

0P = o?rp — gé + X . (82

If we insert solutions (70), (71), and (72) into this relation, we find

1
50 =k, a‘*r'[l + o(;;)] + kmr_lp’”Z(o'”“z”zl:<E2 F A+ g—‘?)Jn + o(&)] . (83)
4

From definition (65), it is obvious that the first term (i.e., the only one that has been explicited) in the oscillating part vanishes. This
does not mean that d® contains no p-part! Indeed it can be shown that the next term in the expansion, which was implicitly
included in O(1/0), is given by

1
- (Fz +B, -2 Dl>Jm . (84)
o z
By using various recurrence relations and by noting that
A ’2 2 4
Wi+ 5+ 2%y — L) + (Ly — Ls) . = 7 g0, (85)
one can show that
1 2
F2+Bl—“’z—‘f’Dl=;<g'+7")¢=4nGp! (86)

Note that this result does not depend on A, (or on any other second-order quantity), and in that respect, it is a first-order term.
Indeed, had we solved directly Poisson’s equation, instead of solving first for X, £, and #, this fact would have been evident. How
come, then, that we had to wait till the third-order approximation in order to derive a first-order approximation? It only means that
(6P/p + 6®) and (5P/p) differ by terms proportional to 1/a2.

Note also that if we assume p to vanish at the surface, the p-part of 6® also vanishes there, as well as its first derivative. Boundary
condition (11) then implies that k, vanishes. We therefore come to the conclusion that, to the order of approximation considered
here, there is no f-part present in the eigenfunctions associated to high-order p-modes. The same conclusion is reached for the
homogeneous model, although it is less obvious!

VI. DISCUSSION

Thus far we have shown how to construct a uniformly valid asymptotic expansion for the nonradial pulsations of stellar models,
without having to invoke Cowling’s approximation. We have restricted ourselves to high-order p-modes, for which the frequency o
may be assumed to be large. It now remains to compare the present results with other previously known results: high-order radial
oscillations (i.e., TT68), high-order nonradial oscillations in the case when Cowling’s approximation has been used (i.e., T80 and
ST87), results based on plane-wave theory (e.g., Gough 1986). We will also comment on the relevance of these results in the context
of the observed solar acoustic modes.

Let us first discuss the connection between the plane-wave approach and Olver’s method (1974). For the sake of simplicity,
consider the case when the pulsations satisfy a second-order differential equation (i.e., radial pulsations and nonradial pulsations for
which one neglects the perturbation in the gravitational potential). By a change of dependent variable it is always possible to bring
this equation to its normal form. In the particular case of nonradial pulsations, in a region not too close to the surface, this equation
reduces to

" a2 Il+1)
)(7* + [7 -

Cc

+ 0(1)])(* =0. 87)

7'2

The term O(1) contains quantities that are much smaller than those made explicit.
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The plane-wave approach consists in comparing equation (87) with the simple wave equation
X, +K*X,,=0. (88)

One thus assumes that K2 is a slowly varying function of r. (It depends also on ¢ and ) The solution of equation (87) is then
expressed in terms of sinusoidal functions (if K2 > 0), or in terms of exponentials (if K? < 0). Obviously, such solutions break down
in the vicinity of a zero of K2, or when K2 becomes singular. These points are the turning points of the equation. For a fixed value of
I, the zeros of K2 define what is called the propagation zone. We thus have an inner turning point at r, for which ¢ is equal to the
local acoustic (or Lamb) frequency. (The outer turning point depends on terms that were not written down explicitly in equation
[87].) According to the plane-wave approach, thus, for r > r, the solution of equation (87) is oscillatory, and for r < r, the solution is
exponential. There is no such simple solution when r & r,. The purpose of the so-called WKB method is to provide a connection
between these two asymptotic behaviors, even though an adequate description near the turning point is lacking. In the particular
case of equation (87), however, if ¢ is sufficiently large (but I not too large), r, is so close to the center that nowhere in the interval (0,
r,) can the solution of equation (87) be approximated by an exponential. Indeed, if ¢*> was a constant, the solution of equation (87)
would then be

ar
X, = r1/2Jl+1/2<'c—> . (89)

In this case, therefore, r, has lost its meaning of a transition point between an exponential behavior and an oscillatory one. A similar
conclusion is reached for the outer turning point: it lies so close to the surface that the plane-wave approximation cannot be made
anywhere near r=R. It is not surprising, therefore, that the plane-wave approach leads to results that are slightly different from
those derived from a more appropriate comparison equation (e.g., Vandakurov 1967). To sum up, the plane-wave approach has
some weaknesses: among others, it does not provide a complete description of the solution (in particular near the transition points),
the error bounds are difficult to ascertain, and an asymptotic series based on this first approximation is not easily derived.

Olver’s method has been devised to overcome all these difficulties. In this approach (if ¢ is the only large quantity in eq. [87]) the
only genuine turning points are the center and the surface, since these are singular points. However, there is no need for introducing
an r, because 62/c? does not vanish anywhere. Except for a few essential details, the procedure is similar to the plane-wave approach.
One defines a new independent variable which, at large distance from the turning point, takes into account that ¢? is not constant
but which, at short distance, is proportional to this distance. Equation (87) is thus replaced by

2X 10+ 1)
e s [az D oy, =o. 90)

If one neglects altogether the term O(1) in this equation, its solution is given by expression (89), where r is replaced by u (and ¢ by 1).
In this connection, compare the ideal solution (89) with the corresponding leading term in solution (26). It should be pointed out
that, although the emphasis has been put here on the behavior of the solution near the turning point, it naturally merges with the
expected oscillatory behavior far away from these turning points.

Obviously, far enough from the transition points there is no difference between the plane-wave approach and Olver’s asymptotic
theory. What is more satisfactory in the latter approach is that the comparison equation is now allowed to be more complex than
equation (88), so that one can describe the solution in the whole domain without any restriction. As already mentioned, the point r,,
which is essential in the plane-wave approach, does not play any role here, nor does the point where u? = I(! + 1)/o%. Hence, there is
no reason for the integrals defining the correcting term T, (see eq. [77]) to be limited to the “ propagation zone.” On the contrary, we
have shown that one must extend the integration over the whole star, i.e., fromr = Otor=R.

Basically, in this paper we have followed Olver’s procedure. We have introduced new dependent and independent variables in
such a way that the comparison equation be as simple as possible, while keeping the major features of the original equation. Of
course, in the case of a fourth-order differential equation, it is not obvious how to define a normal form: it is not possible to derive
from equation (12) an equation that is free from the two odd-order derivatives. However, guided by the limiting form of the solution
close to the transition points, we knew the comparison solutions, without having to write down the comparison equation! We thus
came to the conclusion that, in principle, the nonradial stellar pulsations were the superposition of two parts, a nonoscillating one
(the f-part) and an oscillating one (the p-part), and that each of these two parts required a different asymptotic treatment. Only in a
homogeneous model are these parts independent of each other. We have shown that, at least to second-order approximation, there
is no f-part in the solution describing high-order p-modes (i.e., modes for which o2 is large, but / is not too large). To this order, the
p-modes pulsations are thus purely oscillatory. Of cource, we could not have obtained the f~modes, since their frequencies cannot be
large, unless the degree / is also large!

We are now in a position to compare the present results with the asymptotic approximations derived for the radial pulsations
(TT68) as well as for the high-order p-modes (T80 and ST87). When I = 0, it is obviously not necessary to solve for X, as we did here.
Indeed, these modes are described by a simple second-order equation in the radial displacement £, and this equation has been
studied from an asymptotic point of view in TT68. We have already mentioned that the quantity W,, defined in equation (50),
reduces exactly to the quantity h(x) defined in TT68 (eq. [40]). As a result, if allowance is made for the fact that the inner solution is
expressed here in terms of J 5, and J, , (it was expressed in terms of J;,, and J 5, in TT68), we obtain exactly the same expansions.
And since the expansions are the same, the matching condition between the inner and outer solutions gives exactly the same
expression for the frequencies.

As far as the nonradial oscillations are concerned, we do not expect a perfect agreement between the present results and those that
were obtained after having neglected the perturbation in the gravitational potential. In T80, the p-modes were described in terms of
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& and 8P/p (or is it 5P/p + 6®, since 6@ was assumed to be negligible?). As we have shown in § Ve, up to second-order in 1/a, §P/p
and (OP/p + o®) are identical. On the other hand, from equation (10) it follows that (5P/p + 6®) is precisely a*rn. The comparison
between the present results and those of T80 is therefore easy to make. Thus, the present solutions (68) [&(in)], (69) [n(in)], (71)
[£(out)], and (72) [n(out)] must be compared to solutions (59), (58), (60), and (61) of T80, respectively. Not surprisingly, in a first
approximation, the agreement is excellent. In other words, to this order of approximation, Cowling’s approximation is not
determinant. However, a closer examination of the eigenfunctions reveals that at second-order in 1/o these functions already
depend on whether Cowling’s approximation has been made or not. Indeed, it can be shown that the present inner solutions differ
from the corresponding solutions in T80 by terms that are proportional to

"1 2 "1
-{g' +-gldr=| - (4nGp)dr.
Lc(g+rg)r Lc(np)r ©n
Similarly, the respective outer solutions differ from each other by terms that are proportional to
R1(, 2 R1
-\g +-gldr= - (4nGp)dr . 92)
. ¢ r , ¢

Since in a realistic star p decreases outward, one thus confirms the conclusion that Cowling’s approximation has more impact in the
inner region than in the outer layers. It is perhaps also worth noting that the error introduced by neglecting the perturbation in the
gravitational potential involves the use of Laplace’s equation instead of Poisson’s equation in the equilibrium state.

Of greater interest is the impact of Cowling’s approximation on the frequencies themselves. It is immediately apparent that the
dispersion relation (75) and the one derived in T80 (or in ST87; see their eq. [120]) have the same structural form. In both cases, the
second-order approximation involves a quantity that is an integrated characteristic of the model (it is denoted T; here, eqs. [78] or
[81]; it was ¥, in T80, eq. [71]; and y in ST87, eq. [123]). Here too the dependence of T, on I may be expressed as

T=—al+1)+48, 93)

where « and f are two constants. The constant # depends only on the model and is the same as the quantity T that was defined for
the radial pulsations (see TT68, eq. [39]; we have already noted that the present results naturally generalize the case I = 0). As to the
constant «, a comparison between expression (93) and definition (78) yields, after an integration by parts,

Ride, o (*Lde)
2a=—f ——dr——J‘ cd(rz)dr' %4

o T dr o

This result is not different from what was already known. Parenthetically, it has often been argued that the constant Z (see eq. [76];
essentially the travel time of a sound wave between the center and the surface) is sensitive to the superficial layers because c is small
there, and that the constant « is sensitive to the central regions, because c is large there (e.g., Gilliland and Dippen 1988). This is
partly true. The second equality in equation (94) makes the point clear: for a homogeneous model d(c?)/d(r?) is a constant, and
except for normalization constants, 2« and Z are exactly the same integrals! What is important in equation (94) is not the amplitude
of ¢ but the variation of its amplitude.

In view of the differences noted between the eigenfunctions describing the nonradial oscillations (computed with and without 6®)
it is not surprising to find that T; differs from the corresponding quantity (V,, in T80, y in ST87) by a term

R
1
AT, = j ~ (4nGp)dr . (95)
0

One concludes therefore that AT, is independent of the degree I of the mode. Now, it is well known that Cowling’s approximation is
a good approximation for sufficiently high order k, or for sufficiently high degree I. Furthermore, it is expected to give better results
in more centrally condensed objects. These properties are apparent in the asymptotic expressions.

Let us now concentrate on the dispersion relation (75) itself. Since we are considering high-order p-modes, T}/ in this equation is
small compared to 1, and we may use the expansion of tan( ) around k= (k is an integer). In agreement with the order of
approximation used for the eigenfunctions, we thus write

T 1 T, 1
0Z==(2%k+n+1+z]+=+0|). (96)
2 2 o o

(We now use the more explicit notation n, for the superficial effective polytropic index, in order to avoid any confusion with the
order of the mode, which is sometimes also denoted by » in the literature). To second order, this last expression may also be written
as

- 1\ 2 T,z 1
=% l+2)+2 1), 97
9z 2( thet +2)+7r(2k+ne+l+1/2)+0<02> ©7)

In a first approximation, (k — 1) is the number of nodes in the eigenfunction X. This conclusion is immediate if the junction between
the inner and the outer solutions is made at node number s counting from the center, and at node number ¢ counting from the

surface. We have therefore
1 1 1 1 1
oZ=nl:s+§<l+5>——z:|+n[t+§(ne+1)—2]. (98)
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By comparing this expression with expression (96), we conclude that the number of nodes along the radius (ie., s + t — 1) is indeed
equal to (k — 1). Counting the number of nodes of ¢ is a much more delicate matter since, as we have seen in § IVa, close to the
center the second term in its expansion dominates over the first one.

From a practical point of view, one of the main concerns is the following: when may we use expression (96) or (97), and what
accuracy may we expect to reach? Since the method we used to construct the asymptotic expansion is nothing but a generalization
of the WK B method, the more nodes there are along the radius, the more accurate the results. Therefore, we must necessarily have
k > 1. In addition, the terms I(I + 1)/r? were considered not more than a correction when we solved for X in the outer domain; this
means that we have implicitly assumed that 62Z% > I(I + 1), (or k > | + 1/2). Furthermore, an inspection of Hankel’s expansion of
Bessel function J (oz) (Which has been used to derive eq. [75]) suggests that it is valid whenever oz > v2/2. Since n, is not expected to
exceed 3 or 3.5 in stars, this condition is easily satisfied by the outer solution. On the contrary the situation in the inner solution can
be more stringent. Indeed, it would seem that when 20z < (I + 1/2)* we cannot hope to have reliable results. Again for the lowest
degree modes, this condition is easily avoided. We now have a more precise limitation. By comparing expressions (96) and (97),
which, from an asymptotic point of view, are equivalent, we find that they indeed lead to nearly the same results provided

T 1\ ]?
m21<| 2 2k+ne+l+§] , 99)

or, if we limit T, to its part that is proportional to I(I + 1),
4
2k> (1+ 1/2)(1 + s aZ) . (100)

For polytropic models, the product «Z (which is independent of any normalization) is an increasing function of the concentration,
ranging from 72/4 (n, = 0) to ~9.5 (n, = 3). In these two particular cases, condition (100) therefore translates into k > (I + 1/2) in
the homogeneous model and into k > 3.9(! + 1/2) for the more centrally condensed polytrope. Hence if we want to achieve the same
accuracy in both models for modes of degree I = 10 (say) we have to consider modes of order k > 10 in the homogeneous model and
modes of order k > 40 in the polytrope n, = 3. It thus seems that the more centrally condensed the object, the less accurate the
asymptotic approximation.

The fact that the limitation (100) depends on ! is not surprising. It has nothing to do with a supposedly inappropriate comparison
equation near the “turning points” (as suggested by Gough 1986, p. 138). Indeed, as we have said before, the method devised by
Olver (1974) guarantees that the solution is valid everywhere, including near the turning points. How then is it possible to lift the
restriction imposed by condition (100)? First, we have assumed that the outer solution satisfies an equation in which terms
proportional to I(I + 1) are not essential, and second, at the junction point we approximated the Bessel functions appearing in the
inner solution by their Hankel’s expansion (valid for large values of the argument, but for fixed value of the index). These two
essential assumptions cannot be made for high-degree modes. But then, we are faced with two-parameter expansions.

Let us now turn to more quantitative considerations. Since only in a homogeneous model are the frequencies computable with an
infinite accuracy, we give in Table 2 the exact values and the approximations derived by means of equations (96) and (97) for this

TABLE 2
THE p-MoODES IN THE HOMOGENEOUS MODEL*

WITHOUT COWLING’S APPROXIMATION 6¢ NEGLECTED

1 k o, 7,(96) a,(97) Exact “Exact” a,(T80)
0..... 5 11.0680 10.8084 10.8145 10.8115 10.9949 10.9947
0..... 10 21.6089 21.4783 21.4791 21.4787 21.5716 21.5716
0..... 15 32.1498 32.0623 32.0626 32.0624 32.1248 32.1247
0..... 20 42.6907 42.6249 42.6250 42.6250 42.6719 42.6719
1..... 5 12.1221 11.7899 11.7990 11.7956 11.9639 11.9618
1..... 10 22.6630 22.4888 22.4902 22.4897 22.5784 22.5781
1..... 15 33.2039 33.0855 33.0860 33.0858 33.1462 33.1461
1..... 20 43.7448 43.6551 43.6553 43.6552 43.7010 43.7010
2..... 5 13.1762 12.6925 12.7102 12.7043 12.8607 12.8542
2..... 10 23.7171 23.4554 23.4582 23.4572 23.5423 23.5413
2..... 15 34.2580 34.0779 34.0788 34.0785 34.1371 34.1368
2..... 20 44.7989 44.6615 44.6619 44.6618 44.7065 44.7064
3. 5 14.2302 13.5302 13.5646 13.5526 13.6992 13.6842
3..... 10 247712 24.3827 24.3888 24.3865 24.4684 24.4658
3..... 15 35.3121 35.0418 35.0439 35.0431 35.1001 35.0992
3..... 20 45.8530 45.6455 45.6464 45.6461 45.6899 45.6895
10..... 5 21.6089 18.0721 18.6510 18.4306 18.5386 18.2085
10..... 10 32.1498 30.0207 30.1617 30.0997 30.1661 30.0923
10..... 15 42.6907 41.1370 41.1935 41.1677 41.2163 41.1875
10..... 20 53.2317 52.0026 52.0309 52.0178 52.0562 52.0419

* With I'; = 5/3. The frequencies o are in units of /(nGp).
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model. All frequencies are normalized by (nGp)'/2. Thus, g, is the first approximation, obtained by neglecting the correcting term T;;
7,(96) and 6,(97) are second-order approximations, obtained by solving equations (96) and (97), respectively. (In the second-degree
eq. [96] only the largest solution is relevant.) For comparison, we recall the corresponding values obtained in the context of
Cowling’s approximation. (Of course, in the case of a homogeneous model, it is not necessary to use Cowling’s approximation; we
include it only as a reference.) The “exact” values were computed by Sauvenier-Goffin (1951) and the approximations a,(T80) are
those derived in T80.

From Table 2, the asymptotic character of the approximations is immediately apparent: the errors decrease as the order of the
mode increases. We also observe that for a given order k, the error increases as the degree | increases. Note also how the
second-order correction greatly improves the accuracy of the approximations. We now have very good agreement, even for the
unfavorable case | = 10 and k = 10! As we have mentioned before, by comparing the frequencies derived by means of equations (96)
and (97) [i.e., 6,(96) and 0,(97)] one can estimate the error made in the approximations. In the present case these two values have
approximately the same relative error, and the mean value would be more accurate; however, I would not generalize to other
models and say that the exact value always lies between ¢,(96) and 0,(97)! Of particular interest is the fact that, for the lowest-degree
modes illustrated in Table 2, the present second-order approximations are much more accurate than the “exact” frequencies
computed with Cowling’s approximation. This is not true for the high-degree modes since, as we have already mentioned, the
asymptotic approximation looses accuracy when / increases, whereas the converse is true for Cowling’s approximation.

We now come to the implication of the results discussed so far on the 5 minute solar oscillations. It is sometimes claimed that
these observations are not well represented by an asymptotic relation of the type (97) above. First, numerical fits, through the solar
data, of the form suggested by equation (97) are not convincing, and the identification of the various constants with physical
quantities is hazardous. (Some fits seem to imply a negative n,.) However, it should be emphasized that there is a conceptual
difference between an asymptotic approximation and a numerical approximation. In the former case, the error is of the order of the
first neglected term in the expansion. (In the case of the p-modes, this error decreases as the frequency increases.) On the contrary, in
a numerical approximation (such as a least-squares fit), one tries to minimize the mean relative error over a definite range. In this
connection it is well known that a good polynomial approximation to J(x) in a given range is not identical to its Taylor expansion
(see, e.g., Abramowitz and Stegun 1970, eqs. [9.4.1] and [9.1.12]). In the case of the solar 5 minute oscillations, comparison between
the observed modes and an asymptotic expression is difficult to make, since at too high a frequency (i.e., when the asymptotic
expression should be more accurate) the observational errors tend to increase.

Another example illustrating the distinction between a numerical approximation and an asymptotic one is the following. If we
adopt expression (97) to estimate the frequencies, we conclude that

2k+1+n,+1/2
Si1 =(0k1— Ox—1,1+2) m)—‘ (101)

should be a constant, equal to 2a/z. This is not observed in the Sun (see Table 3, last column; the numbers in parentheses are the
probable errors on S, ;). Contrary to the expectation expressed by Gough (1986) and Gabriel (1989), our taking 6@ into account has
not modified an earlier (and similar) conclusion. The solar data we have used to compute S, ; are those obtained by Jiménez et al.
(1988): on the one hand, these appear to be the most extensive ones for the low-degree solar oscillations and, on the other hand,
these are the only data (in this range of ) that include error bars (see, e.g., Duvall et al. 1988). In close agreement with Duvall (1982)
we have let n, = 1.43. Obviously, S, ; is not a constant for the observed solar modes. However, as we have said before, one should
not forget about the term O(1/0?). Indeed, from equation (96), which is asymptotically equivalent to equation (97), we do not
conclude at an exact proportionality.

TABLE 3
THE QUANTITY §, ,*

n,=0
n,=15 n,=3 SuN

1 k Exact Approximation (“exact™) (“exact”) (observed)
0....... 5 46.6108 49.3076
0....... 10 45.8227 46.4418 . . ..
0....... 15 45.6688 45.9418 59.43 101.91 56.7(2.2)
0....... 20 456140 45.7675 59.74 107.37 66.5(2.2)
0....... 25 45.5884 45.6867 59.90 110.74 80.9(9.8)
0....... 30 45.5744 45.6427 60.00 112.88 85.5(9.5)
0....... 35 45.5659 45.6162 . 114.35 e
1....... 5 47.1577 50.4155
1....... 10 459973 46.7810 . . .
1....... 15 45.7534 46.1062 59.21 97.48 59.1(1.7)
1....... 20  45.6637 45.8644 59.60 103.79 68.3(2.7)
1....... 25 45.6211 45.7506 59.80 107.86 76.6(3.8)
1....... 30 455975 45.6880 59.92 110.56 109.4(8.4)
1....... 35 45.5831 45.6500 . 112.44 .
207 ... 45.5422 45.5422 60.15 119 77?

* Frequencies are expressed in uHz.
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For comparison purposes we have evaluated some theoretical S, ;’s: in a homogeneous model and in two centrally condensed
polytropes, n, = 1.5 and n, = 3. Following Mullan and Ulrich (1988), the scaling of the frequencies has been chosen so that these
idealized models have the solar mass and radius (G = 6.67 x 1078, M = 1.989 x 1033, R = 6.9627 x 10'°, in cgs units). The
frequencies are now expressed in #Hz. For the homogeneous model we have used both the exact frequencies (Pekeris 1938) and the
approximate values g,(96) above. For the polytropes n, = 1.5 and n, = 3 the “exact” frequencies are those computed by Mullan
and Ulrich (1988); the fact that these frequencies were obtained with the help of Cowling’s approximation is of no consequence,
since, as we have shown, the quantity « does not depend on this approximation, at least to first order. The bottom line in Table 3
gives the value to which S, ; must tend, according to asymptotic theory. For the three polytropes, the convergence is obvious. As
expected, it is slower in the most centrally condensed model. What is perhaps significant is that in the homogeneous model (which is
convectively unstable), the convergence of S, ; toward 2a/n proceeds from above, whereas in the polytrope n, = 3 (convectively
stable) it proceeds from below. As far as the solar results are concerned, although the S, ,’s increase with k, their convergence to a
particular value is far from obvious. This could be explained by different factors. Among others, observational errors (either random
or systematic) could play a role. On the theoretical side, nonadiabatic effects could have an important effect on the S, ;’s. Another
possibility is that the assumptions we have made about the structure of the Sun are too crude: p and c? (and their first two
derivatives) are continuous everywhere, the atmosphere is nearly polytropic, c? vanishes at the surface as (R —r), to name a few.
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