HD49933

- $Teff = 6700 \pm 100 \text{ K}$
- Mbol = [3.25; 3.45]
- $[Fe/H] = -0.32 \pm 0.1$

 $Vsin i = 10 \pm 4 \text{ km/s}$

 $<\Delta v_{n,0} >_{n>10} = 90.1765 \text{ (OM+TA)}$ $<\Delta v_{n,0} >_{n>10} = 90.1799 \text{ (TT)}$

Models

М	Х	Z	OV	α	diff
1.05 - 1.15	0.70	0.00652	0.0 / 0.2	1.8	N
1.05 - 1.3	0.70	0.0082	0.0 / 0.2	1.8	N
1.1 - 1.25	0.70	0.01033	0.0 / 0.2	1.8	N
1.15 – 1.3	0.736	0.00857	0.0 / 0.2	1.8	N
1.35, 1.38	0.70	0.019	0.0 / 0.2	1.8	Y
1.5	0.70	0.03	0.0 / 0.2	1.8	Y

1.
$$\Delta v_{n,\varrho} = v_{n,\varrho} - v_{n-1,\varrho}$$

2. $\delta v_{0,2} = v_{n,0} - v_{n-1,2}$
3. $\delta v_{0,1} = 2 v_{n,0} - (v_{n,1} + v_{n-1,1})$
4. $\delta v_{1,3} = v_{n,1} - v_{n-1,3}$

The best models fitting $\Delta v_{n, \ell}$ are but they do not satisfy 2, 3, 4

Introducing diffusion, the constraints on the model parameter would be

It appears that $\delta v_{0,1}$ decreases at high frequencies if overshooting is included, and $\delta v_{0,1}$ decreases at low frequencies if microscopic diffusion is

M : 1.12 - 1.25 M_ Z : 0.00652 - 0.01033X : 0.70 - 0.736Age: 2 - 3 Gyr. α_{ov} : 0.0 - 0.2No Diff

$$M > 1.35 M_{-}$$

$$0.03 > Z_i > 0.019$$

$$X : 0.70$$

$$Age < 1. Gyr.$$

$$\alpha_{ov} : 0.0 - 0.2$$

Diff

