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In solar physics, odd-order image filters are quite popular,

they are good for edges, but yield wrong loop postions.

⇒ need local Taylor series expansion to at least 2nd order

Iapprox(x) ' I(i) + gT (x− i) + (x− i)TH (x− i)
H gives important information about the local orientation of a loop.
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In solar physics, odd-order image filters are quite popular,

they are good for edges, but yield wrong loop postions.

⇒ need local Taylor series expansion to at least 2nd order

Iapprox(x) ' I(i) + gT (x− i) + (x− i)TH (x− i)
H gives important information about the local orientation of a loop.

Strous et al. (200?) and Lee et al. (2006) use a 9-point stencil to

estimate the Taylor coefficients.

Differentiation is ill-posed → need for a properly regularised

estimation for the Taylor coefficients.
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41st step: Ridgel determination via Automated
Scaling (Lindeberg, 1993)

For each image pixel we consider multiply sized neighbourhoods:

For each window size we
obtain an estimate for:

• ridge point location
• ridge orientation angle
• ridge quality

For each pixel the ridge
estimate with maximum
quality is chosen
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8Application to SECCHI EUVI images

Original image: an active region from 2006-12-12
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Ridgel orientation: derived from the eigenvectors ei of H
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12Application to SECCHI EUVI images

Ridgel chains resulting fom the connection step



13Application to SECCHI EUVI images

First fits to the ridgel chains . . .



14Application to SECCHI EUVI images

. . . after some polishing
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