A new method for 3D reconstruction of polar plumes

Nicolas Barbey with, in alphabetic order: Frédéric Auchère, Karine Bocchialini, Thomas Rodet and Jean-Claude Vial

Institut d'Astrophysique Spatiale, Équipe Solaire Laboratoire des Signaux et Systèmes, Groupe des Problèmes inverses Fundings of CNES and CLS

March 7, 2007

Tomography with time evolution

Fig.: STEREO spacecrafts trajectory scheme

- ➤ 2 simultaneous points of view
- ➤ 2n points of view : rotational tomography
- ▶ But polar plumes show time evolution

Can we get a 3D + time reconstruction of poles using all this information?

An inverse linear problem

$$y_t = H_t x_t + b_t \tag{1}$$

Fig.: The image y_t depends linearly on the emission x_t

Fig.: H_t describes the projection of one image

This problem is heavily underdetermined since $x = (x_t)_{t \in [0,T]}$ is of dimension 4.

A model of time evolution

But we can add some kind of a priori directly into the model :

$$y_t = H_t(x. * A\alpha_t) + b_t$$
 (2)

- $ightharpoonup y_t$ and H_t are still an image and the projection matrix
- ▶ x is a time independent emission cube
- ► A describes areas of homogeneous temporal evolution
- ullet lpha is the time evolving gain on each area

Note that the problem is bilinear on (x, α)

Regularized least-square

We define our solution as the minimum of :

$$J = ||y - H(x. * A\alpha)||^{2} + \lambda ||D_{r}x||^{2} + \mu ||D_{t}\alpha||^{2}$$
(3)

- $ightharpoonup \lambda$, μ are user-chosen parameters
- ▶ D_r, D_t are finite differentiation matrices on space and time
- We minimize this criterion with a conjugate-gradient algorithm on ${\bf x}$ and explicitly on ${\bf \alpha}$

Simulated data Results

Preliminary results on SOHO data

Upcoming results on EUVI

But we need accurate parameters to define the projector H_t :

- ▶ The roll angle needs to be taken into account.
- ► The sun center has to be localized precisely

Ideal data set

- ► Lossless compression underdetermination increases noise
- ► Simultaneous images it constrains more the problem
- ► STEREO spacecrafts at 90° of each other in longitude
- ➤ or STEREO + SOHO spacecrafts at 60° of each other in order to minimize the time of data acquisition

What's next?

- ► Continue analysis of the algorithm with simulated data
- ► Apply our algorithm with 2 or 3 points of view
- ► Enforce positivity of the unknowns
- ► Find a method to estimate the plumes positions
- ► Estimate electron density and temperature from the emission at 17,1 nm 19,5 and 28,4 nm

Electron density and temperature

It is similar to DEM but we do not have LOS ambiguity

Bayesian methods

Tomography can be seen as an inverse problem of the form :

$$y_t = H_t x + b_t \tag{4}$$

	general formulation	tomography
likelihood	f(y x)	$e^{-\frac{\ y-Hx\ ^2}{\sigma_n^2}}$
a priori	f(x)	$e^{-rac{\ Dx\ ^2}{\sigma_r^2}}$
a posteriori	$f(x y) = \frac{f(x)f(y x)}{f(y)}$	$e^{-\ y-Hx\ ^2-\lambda\ Dx\ ^2}$

Minimization Algorithm

We could estimate jointly the parameters but in practice it is more efficient to alternate estimation on x and α .

We have the explicit minimum on lpha since M is a matrix of small size :

$$\alpha_{min} = M(M^t M)^{-1} M^t y$$
 with $M = Hdiag(x)A$
(5)

We make use of a gradient algorithm on x:

$$x^{n+1} = x^n - a_{opt}^n \nabla_{x^n} J \tag{6}$$

Degenerate case with no plume

$$y_t = H_t x \alpha_t$$
, with $\alpha_t \in R$ (7)

We can estimate the global intensity variation on each image.

It can be rewritten as a non-linear problem on $oldsymbol{x}$ only :

$$y_t = \left[I - H_t x \left((H_t x)^T H_t x \right)^{-1} (H_t x)^T \right]^{-1} b$$
(8)

which can be solved with a gradient algorithm.