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Tomography with time evolution
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Fig.: STEREO spacecrafts
trajectory scheme

I 2 simultaneous
points of view

I 2n points of view :
rotational
tomography

I But polar plumes
show time evolution

Can we get a 3D + time reconstruction of poles
using all this information ?
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An inverse linear problem

yt = Htxt + bt (1)

Fig.: The image yt depends
linearly on the emission xt
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Fig.: Ht describes the
projection of one image

This problem is heavily underdetermined since
x = (xt)t∈[,T ] is of dimension 4.
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A model of time evolution
But we can add some kind of a priori directly into
the model :

yt = Ht(x. ∗ Aαt) + bt (2)

I yt and Ht are still an image and the projection
matrix

I x is a time independent emission cube

I A describes areas of homogeneous temporal
evolution

I α is the time evolving gain on each area

Note that the problem is bilinear on (x, α)
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Regularized least-square

We de�ne our solution as the minimum of :

J = ‖y −H(x. ∗Aα)‖2 +λ‖Drx‖2 +µ‖Dtα‖2

(3)

I λ, µ are user-chosen parameters

I Dr , Dt are �nite di�erentiation matrices on
space and time

I We minimize this criterion with a
conjugate-gradient algorithm on x and explicitly
on α
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Simulated data Results

(a) Simulation at
t = T

2

(b) Temporally ho-
mogeneous areas

(c) Simulation of
αt for each plume

(d) x with a �lte-
red back-projection
algorithm

(e) x.∗gt with our
algorithm at t = T

2

(f) Estimation of
αt with our algo-
rithm
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Preliminary results on SOHO data

(g) (h) x without
time evolution

(i) Temporally
homogeneous
areas

(j) Estimation of
αt with our algo-
rithm

Movie
(k) x. ∗ gt with
our algorithm at
t = 0

(l) x.∗gt with our
algorithm at t =
T

2

(m) x. ∗ gt with
our algorithm at
t = T
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Upcoming results on EUVI

But we need accurate parameters to de�ne the
projector Ht :

I The roll angle needs to be taken into account.

I The sun center has to be localized precisely
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Ideal data set

I Lossless compression - underdetermination
increases noise

I Simultaneous images - it constrains more the
problem

I STEREO spacecrafts at 90�of each other in
longitude

I or STEREO + SOHO spacecrafts at 60�of each
other
in order to minimize the time of data acquisition



10/ 14

What's next ?

I Continue analysis of the algorithm with
simulated data

I Apply our algorithm with 2 or 3 points of view

I Enforce positivity of the unknowns

I Find a method to estimate the plumes positions

I Estimate electron density and temperature from
the emission at 17,1 nm 19,5 and 28,4 nm
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Electron density and temperature

It is similar to DEM but we do not have LOS
ambiguity

17.1 nm 19.5 nm 28.4 nm

Te ne
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Bayesian methods

Tomography can be seen as an inverse problem of the
form :

yt = Htx + bt (4)

general formulation tomography

likelihood f (y |x) e
−‖y−Hx‖2

σ2
n

a priori f (x) e
−‖Dx‖2

σ2
r

a posteriori f (x|y) = f (x)f (y |x)
f (y)

e−‖y−Hx‖2−λ‖Dx‖2
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Minimization Algorithm

We could estimate jointly the parameters but in
practice it is more e�cient to alternate estimation on
x and α.
We have the explicit minimum on α since M is a
matrix of small size :

αmin = M(MtM)−1Mty with M = Hdiag(x)A
(5)

We make use of a gradient algorithm on x :

xn+1 = xn − anopt∇xnJ (6)
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Degenerate case with no plume

yt = Htxαt , with αt ∈ R (7)

We can estimate the global intensity variation on
each image.
It can be rewritten as a non-linear problem on x
only :

yt =
[
I − Htx

(
(Htx)THtx

)−1
(Htx)T

]−1

b

(8)
which can be solved with a gradient algorithm.
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