QUANTUM THEORY OF DIELECTRONIC RECOMBINATION

bу

Jacques Anne Roland DUBAU

Thesis submitted in partial fulfilment of
the requirement for the degree of

Doctor of Philosophy
in the
Faculty of Science
of the
University of London

ABSTRACT

The dielectronic recombination rate formula of Bates and Dalgarno is justified by using an accurate resonance profile theory and the time dependant perturbation method developed by Davies and Seaton. The formula of Burgess for the autoionisation probability is generalised to the many channel problem and applied to the delicate case of He⁺.

The symmetry between photoionisation and dielectronic recombination is proved and a generalised \lesssim matrix containing the photon interaction is deduced.

The method of extrapolation, in the case of He⁺ + e⁻, is simplified compared to Bely's method and a resonance profile is given that generalised Seaton's formula to this case.

A new formula obtained for the dielectronic recombination rate satisfies the two unitary conditions corresponding to the collision theory and photo-emission theory.

The calculated results are compared to those of Burgess and Shore .

Acknowledgements

I am very grateful to Professor M.J. Seaton for suggesting the subject of this thesis and for invaluable advice and guidance throughout the course of this work.

I wish to thank everybody in my laboratory for their help at different moments of this work . In particular I thank Dr. W. Eissner , Dr. M. Hershkowitz and Mr. J. Wells .

I am also indebted to Dr M. Gillespie for his friendly assistance during the wri-ting of this thesis and to my parents for their moral support.

All numerical work was performed on the IBM 360/65 at University College London .

This work was carried out under a research grant provided by the Centre National d'Etudes Spatiales, Paris-France.

CONTENTS

		page
Abstract		
Acknowledgements		
Chapter	I - Introduction	7
Chapter	II - Initial electron-ion system and final wave	9
	functions	
2-1	Coupled integro-differential equations	9
2-2	Asymptotic expression for open channels	13
2-3	R and S matrices	15
2-4	Asymptotic expansion when some channels are closed	17
2 - 5	Asymptotic expansion when all the channels are	18
	closed	
2-6	Normalisation	19
Chapter	III - Perturbation of the electron-ion system by	21
	the radiation field	·
3-1	Time dependant perturbation theory	21
3-2	Initial conditions	22
3-3	Time coupled equations	23
3-4	Dielectronic recombination	26
3 - 5	Generalised 5 matrix	29
3 - 6	Unitarity of the generalised S matrix	30
3 - 7	Commentary on the former method	उ०
3 - 8	Photoionisation	34
Chapter	IV - Study of the collision resonance structure for	: 34
	He ⁺ + e ⁻	
41	Introduction	34

4-2	Coupled radial equations	35
4-3	Analyticity	36
44.	Asymptotic potential	37
45	Solutions of the coulombic solution	39
	a) Analytic solutions	39
	b) Asymptotic form	40
	1) C negative	41
	2) & positive	43
	d) A real	43
	β) λ = - 1 + iλ	44
	3) E = 0	44
	c) Commentary on & and C	45
4-7	A matrix	46
4-8	Resonance structure	46
	a) General formula	46
	b) Degenerate closed channels	50
4-9	Bound states in the case of degenerate closed	51
	channels	
4-10	Weak coupling between open and closed channels	53
Chapter	V - Electron capture probability by photo emission	56
5-1	Interaction Hamiltonian	56
5-2	Bates and Damgaard coulombic approximation	58
53	Energy representation	65
5-4	Principal quantum number representation	82
5-5	Commentary on the formulae obtained	72
Chapter	VI - Calculation of the complex quantum defect for	75
	He ⁺ + e ⁻	•
	·	

6-1	Introduction	75
6-2	Bely's programme	75
6-3	Chapter IV theory programme	77
6-4	Comparaison with Norcross and Seaton's method	80
Chapter	VII - Calculation of the dielectronic recombination	408
	rate	
7-1	Formulation of the problem	108
7-2	Results	110
Chapter	VIII - Conclusion	118
Appendi	x 1 Study of $A(E, \Delta)$	119
Appendi	x 2 Study of $K(\gamma, \lambda)$	123
Appendi	x 3 The 🕺 matrix is real and symmetric	125
Referenc	ces	128

CHAPTER I

Introduction

The importance of the dielectronic recombination of ions in Astrophysical plasmas was first recognised by Massey and Bates (1942). Subsequently Bates and Dalgarno (1962) derived a formula for the dielectronic recombination rate which has been used until now for practical calculations.

For evaluations the autoionisation probability required in this formula two different methods were used:

The first approach was given by Burgess (1964) in which he extrapolated the excitation cross section of the ion through the excitation threshold. This method proved to be excellent for the high excited states where the dielectronic recombination appeared to be important.

A second approach was developed by Trefftz (1967). The idea of Trefftz was to solve the collision interaction by a distorted wave approximation and then treat the configuration interaction and the photointeraction both as perturbation.

In 1969, Davies and Seaton gave a more rigourous formulation than Bates and Dalgarno . They supposed the problem of collision had been already solved and considered the photon interaction as a time dependent perturbation .

In our method we use integro-differential coupled equations for the collision since in the case of He $^+$ the distorted wave approximation is valid only for $\ell > 5$. Compared to the autoionisation probability of the low partial waves, the partial wave for $\ell > 5$ are very small and can be neglected in the computation of the dielectronic recombination quantities.

We extrapolate the reactance matrices through the excitation threshold (2s,2p) using a generalisation of Burgess' method. We also consider all the coupling between resonances (closed-closed interaction).

CHAPTER II

Initial electron-ion system and final atomic wave functions

In this chapter we define the wave functions of the system neglecting radiation field interaction. These wave functions correspond to the initial (ion-free electron) system and final (ion-bound electron) system. They satisfy the Schrödinger wave equation, the relativistic interaction being neglected.

By decomposing these wave functions using a partial wave analysis we simplify the problem and obtain in the place of the pratically unsolvable Schrödinger equation a set of coupled integro-differential equations

The normalisation of these wave functions, the scattering \int_{∞}^{t} matrix and the reactance \int_{∞}^{t} matrix are then briefly outlined.

2-1 Coupled integro-differential equations

The Schrödinger equation of the system of two electrons, $\mathrm{He}^+ + \mathrm{e}^-$, is

$$(H - E) \Psi(x_1 x_2) = 0$$
 (2.1)

It contains partial derivatives that makes it pratically

unsolvable in this form.

These can be summarised by the following formulae:

$$\Psi(x_1x_2) = \sum_{\gamma} \Psi_{\gamma}(x_1x_2)$$

$$\Psi_{\gamma}(x_1x_2) = \Phi_{\gamma}(x_1 \hat{r}_2 \sigma_2) \frac{F_{\gamma}(r_2)}{r_2}$$
(2.2)

 $\phi_{\chi}(\chi_1, \hat{\zeta_L}, \sigma_{\chi})$ includes the wave functions of the He⁺ electron and the angular and spin functions of the colliding electron

$$\Phi_{\mathcal{S}}(x_1 \hat{r}_2 \sigma_2) = \frac{1}{r_1} P_{\text{ne}}(r_1) \gamma_{\text{eme}}(\hat{r}_1) \chi(\text{ms}|\sigma_1) \gamma_{\text{eme}}(\hat{r}_2) \chi(\text{ms}|\sigma_2)$$
(2.3)

with

$$\begin{cases} P_{ne}(r) P_{n'e}(r) dr = \delta_{nn'} \\ Y_{eme}^{x}(r) Y_{e'm'e}(r) dr = \delta_{ee} \delta_{meme'} \\ X_{eme}(r) X_{e'm'e}(r) dr = \delta_{msm's} \end{cases}$$

$$(2.4)$$

where & denotes the coupling representation

 $(N^{\ell_1}M_{\ell_1}M_{\ell_2})$ are the quantum numbers of the He⁺ target and $(k_n\ell^)M_{\ell_1}M_{\ell_2})$ the quantum numbers of the colliding electron .

Due to the conservation of the angular momenta it is better to use the following representation:

$$L' = (nlk_n l' S L M_S M_L)$$
 (2.6)

Then we shall define

$$\Psi'(x, x_2) = \sum_{\Gamma} \Psi_{\Gamma}(x, x_2)$$

$$\Psi_{\Gamma}(x, x_2) = \Phi_{\Gamma}(x, \hat{r_2}\sigma_2) \xrightarrow{\Gamma_{\Gamma}(\hat{r_2})}$$
(2.7)

with

$$\phi_{\Gamma}(x,\hat{r}_{2}\sigma_{2}) = \sum_{\chi} (\pi/\chi) ch_{\chi}(x,\hat{r}_{1}\sigma_{\chi}) \qquad (2.8)$$

where

$$(\Pi/8) = C_{M_1M_2^2M_L} C_{M_3M_3^2M_3}^{1/2}M_3$$
 (2.9)

 $_{lpha\, \&\, arphi_{lpha}} \sim lpha\, \&\, arphi_{lpha}$ being the vector coupling coefficient (Clebsch-Gordon)

The transformation matrix between the radial solutions $\mathcal{F}_{\mathcal{C}}(t_i)$, $\mathcal{F}_{\mathcal{C}}(t_i)$ will be seen later when we shall have studied the asymptotic form of these solutions.

In order to satisfy the Pauli principle we shall antisymmetrise $\Psi(x_1x_2)$ (or $\Psi(x_1x_2)$). In collision problem we have not the difficulty arising when the two electrons are equivalent.

$$\Psi_{A}(x_{1}x_{2}) = \frac{1}{\sqrt{2}} \left\{ \Psi(x_{1}x_{2}) - \Psi(x_{2}x_{1}) \right\}$$
 (2.10)

Introducing (2.10) in (2.1) and using the hypothesis that ϕ_{Γ} or ϕ_{χ} are a complete basis we have in place of (2.1) the following infinite set of equations

$$\left(\phi_{\text{PI}}, |H-E| \psi_{\text{A}}\right) = 0 \tag{2.11}$$

This in turn gives the infinite set of coupled radial integrodifferential equations

$$\left\{\frac{d^{2}}{dr^{2}}-\frac{\ell^{2}(\ell^{2}+1)}{r^{2}}+\frac{2}{r^{2}}+k_{n}^{2}\right\}F_{r}(r)=\sum_{r}U_{r}r^{2}(r)F_{r}(r)(2.12)$$

where $\bigcup_{r,r}$ is an integro differential operator (see Percival and Seaton (1957)).

$$V_{nn} = 0$$
 if $L \neq L'$ or $S \neq S'$

(conservation of the angular momenta)

Unis independent of Mand Ma (Racah tensor)

If we take, in (2.3), $P_{n\ell}(r)$ real and for $Y_{\ell m\ell}(\hat{r})$ the classical normalised spherical harmonic $U_{ppl}(r)$ becomes symmetric and real.

$$U_{n'n} = U_{n'n}, \qquad (2.13)$$

In chapter IV we shall use only the asymptotic expression of

$$U_{\Gamma\Gamma'}(r) \sim \frac{\lambda_{\Gamma\Gamma'}}{\kappa^2}$$
 (2.14)

The partial wave analysis conserves the energy:

$$E = E_{ne}^{\dagger} + \frac{k_n}{2} = E_{n'e'}^{\dagger} + \frac{k_{n'}}{2}$$
 (2.15)

where E_{Nl}^{+} is the eigen energy of the target He⁺ electron (nl) in a.u. (atomic unit). We can renormalise the He⁺ target energies so that they are equal to zero for the ground state and are positive for the excited states: $E^{+}(15) = 0$, $E^{+}(25) = E^{+}(2b) = 1.5$ a.u.

In practical computations it is impossible to solve an infinite number of coupled radial equations. We shall reduce the He⁺ states to "1s" "2s" and "2p" states (they are usually called terms) giving 3 or 4 equations, (2.12), corresponding to the 3 or 4 elements of the summation for $\psi'(x,x_2)$. As we shall see in 2-2 for each energy E will correspond 3 or 4 independant physical solutions.

Using Kohn variational principle and formula (2.10) but not (2.11) it is possible to obtain the coupled equations (2.12) for the former approximate expansion (see Burke and Seaton (1971)

2-2 Asymptotic expression for open channels

We suppose all the $k_n^2>0$ (it is said that all the channels are open). By choosing the former convention for $P_{n\ell}(r)$ and $Y_{\ell m\ell}(\hat{r})$ we said that U_{ppl} becomes real and symmetric. Then every coefficient in the coupled integro-differential equations (2.12)

are real

and we can deduce that it is possible to find the same number of independant real function that it would have been for independant complex functions. Also it is easy to prove that the maximum number of independant solutions is $2 \times 10^{\circ}$.

For large \(\gamma\), the equations (2.12) tend to coulomb equations and we can develop asymptotically the solutions on the coulomb solutions (regular and irregular)

Fri
$$rightarrow = \left\{ a_{ri} \sin(x) + b_{ri} \cos(x) \right\}$$
 (2.16)

 Γ corresponds to the equation, $\dot{\iota}$ to the solution .

$$X = k_{n}r - \frac{l\pi}{2} + \frac{1}{k_{n}} l_{n} (2kr) + arg \Gamma(l+1-\frac{i}{R})$$
 (2.17)

Now by taking the physical boundary condition

$$F_{ri}(0) = 0$$
 (2.18)

we eliminate half of the independant solutions.

Let's write a basis set satisfying (2.18) on the matrix form (n,n)

$$F = \begin{pmatrix} F_{1i} \\ \end{pmatrix}$$
 (2.19)

we have

$$F \sim \frac{1}{\sqrt{R}} \left\{ \sin(x) A + \cos(x) B \right\}$$
 (2.20)

The matrices having the symbol " \sim " under them are ordinary matrices, the other ones are diagonal matrices e.g $\frac{1}{\sqrt{k}}$, $\sin(x)$, $\sin(x)$

2-3 R and S matrices

We can also choose a bain set having the following asymptotic behaviour:

$$F(R,Y) \sim \frac{1}{\sqrt{k}} \left\{ sin(x) + con(x) R \right\}$$
 (2.21)

where

$$R = 3 A^{-1}$$
 (2.22)

 \mathbb{R} is called the reactance for it represents the departure from the coulombic problem ($\mathbb{R}_{coulomb} = 0$).

Using the Green theorem it can be proved that $\overset{\circ}{\times}$ is symmetric (and real) because $\overset{\circ}{\cup}$ is symmetric (and real), see for example Mott and Massey (1965).

Due to the particular asymptotic form (2.21) we can denote the indices of F(R,r) by Γ and Γ' , Γ' is called "the entrance channel" and Γ is called "the final channel": $F_{\Gamma\Gamma'}(R,r)$.

Let's define another set of solutions but this time a complex one:

$$F(S,r) \sim \frac{1}{\sqrt{R}} \left\{ \exp(-ix) - \exp(ix) S \right\}$$
 (2.23)

where

$$S = (1 + iR)(1 - iR)^{-1}$$
 (2.24)

 \mathbb{R} being real and symmetric S is symmetric and unitary.

On a similar way we can define $F_{\chi\chi}$ corresponding to the representation χ (2.5). The relation between $S_{\chi\chi}$ and S_{rr} , is

$$S_{88'} = \sum_{\Gamma\Gamma'} (81\Gamma) S_{\Gamma\Gamma'} (\Gamma'18')$$

If we consider coulombic plane wave of electron on an ion in the state $(n \ell_{m_{\ell}})$ it is possible, after a partial wave decomposition, to relate $S_{\lambda\lambda}$ to the probability of transition during the collision. Therefore $S_{\lambda\lambda}$ has been called the scattering matrix. The conservation of the electron flux is a consequence of the unitarity of $S_{\lambda\lambda}$:

 \lesssim the transpose conjuguate of \lesssim . The relation between \lesssim and \Re can also be written:

$$S = (1 - iR)^{-1} (1 + iR)$$
 (2.25)

This formula is sometimes useful (see Chapter IV (4.37))

Asymptotic expansion when some channels are closed

When some channels are open and some are closed the corresponding channels have a negative energy $k_{\Gamma''}^2 < 0$ The coulombic solutions are then either divergent $\left(\frac{2\Gamma}{\nu''}\right)^{-\nu''}e^{\frac{r'}{\nu''}}$ or convergent $\left(\frac{2r'}{\nu''}\right)^{\nu''}e^{-\frac{r'}{\nu''}}$ where $k_{\Gamma''}^2 = -\frac{1}{\nu''^2}\left(\nu''>0\right)$.

The physical solution which corresponds to an open entrance channel 7 has final channels being either open Γ^{\prime} or closed $\Gamma^{\prime\prime\prime}$ but for the closed channels the asymptotic \mathcal{F}_{p^np} must be convergent . By doing a linear combination of the n solutions we can eliminate the divergent part and obtain n' convergent physical solutions (n' equals the number of open channels, n" is defined as n"=n-n') .

Their asymptotic form is :

Their asymptotic form is:
$$F_{\Gamma'\Gamma}(\mathcal{R}, \Gamma) \sim \frac{1}{\sqrt{k_{\Gamma'}}} \left\{ \delta_{IN}(X') \delta_{\Gamma'\Gamma} + con(X') \mathcal{R}_{\Gamma'\Gamma} \right\}$$

$$F_{\Gamma'\Gamma}(\mathcal{R}, \Gamma) \sim \left(\frac{2\Gamma}{V''} \right)^{V''} e^{-\frac{K}{V''}} d_{\Gamma''\Gamma}$$
(2.26)

 \Re is a (n',n') matrix. With $d_{r'r}$ we can form a matrix \Re (n",n'). \Re is symmetric (and real) therefore we obtain from it a $\frac{1}{2}$ matrix symmetric and unitary:

$$F_{\Gamma'\Gamma}(\vec{z}, r) \sim \frac{1}{\sqrt{R_{\Gamma'}}} \left\{ e^{-ix'} \delta_{\Gamma'\Gamma} - e^{ix'} \delta_{\Gamma'\Gamma} \right\}$$

$$F_{\Gamma'\Gamma}(\vec{z}, r) \sim \left(\frac{2r}{\gamma''} \right)^{\nu''} e^{-\frac{r}{\nu''}} c_{\Gamma'\Gamma}$$
(2.27)

where

$$J = (1 + iR) (1 - iR)^{-1}$$
 (2.28)

the relation between the \mathcal{C} matrix (n",n) and the matrix \mathcal{A}

$$c = \frac{2}{i} d(1 - iR)^{-1}$$
 (2.29)

(d is a real matrix)

2-5 Asymptotic expansion for all closed channels

When all the channels are closed it is no more a problem of collision but of bound states .

It is always possible to find for any negative energy E a basis set having the following asymptotic form:

$$F_{\mathcal{B}}(\tau) \sim \left\{ \left(\frac{2\zeta}{\zeta}\right)^{-1} e^{\frac{\zeta}{2}} - \left(\frac{2\zeta}{\zeta}\right)^{2} e^{-\frac{\zeta}{2}} \mathcal{B} \right\} \tag{2.30}$$

But the physical solution must not contain divergent elements. It is only possible to find physical solution for particular energies called eigen energies. It is then possible to find a n-column matrix M so that

$$\mathcal{B}^{-1}M = 0 (2.31)$$

Then the column matrix physical solution $\mathcal{P}(\tau)$ is equal to :

$$P(r) = -E_B \mathcal{B}^{-1} M = \left(\frac{2r}{\nu}\right)^{\nu} e^{-\frac{r}{\nu}} M \qquad (2.32)$$

2-6 Normalisation

In order to use the wave functions in a perturbation problem we need to know the normalisation of these wave functions For bound state we want orthonormalised functions i.e.

$$\int \Psi_{A}^{*}(x_{1}x_{2}) \Psi_{A}, (x_{1}x_{2}) = S \qquad (2.33)$$

where $\delta = 0$ if the wave functions correspond to different energies and $\delta = 1$ for the same eigen-energy. We shall prove in Chapter IV that (2.33) is satisfied for

$$M = K \times (2.34)$$

where
$$K = \{\sqrt{T}(\ell+\nu+1)T(\nu-\ell)\}$$
 and $X \times X = 1$.

($X = \{\sqrt{T}(\ell+\nu+1)T(\nu-\ell)\}$ and $X \times X = 1$.)

In the case of all open channels we obtain, using Green theorem (see Mott and Massey (1965)), from the definition of $F\left(S,r\right)$ that

where S and S' are the scattering matrices corresponding to

the energies E and E' .

For closed and open channels the same relation holds with \mathcal{J} and \mathcal{J} .

CHAPTER III

Perturbation of the electron-ion system by the radiation field

The time dependent perturbation theory is a powerful approximation for application in problems dealing with the radiation field. Many such applications are mentionned by Heitler (1954). For transitions between bound states the method gives a reliable theory for the natural line breadth (Wigner and Weisskopf, 1930). Davies and Seaton (1969) generalised the former theory to the case of transitions from free to bound electrons. Their paper is summarised in this chapter.

3-1 Time dependent perturbation theory

The idea is to consider that before a time $t=t_{\rm o}$ there is no perturbation.

If we consider only transitions between bound states, ignoring the continuum, we can expend the wave function as follow

$$\Psi(t) = \sum_{n} b_{n}(t) \psi_{n} e^{-iE_{n}t} \qquad (3.1)$$

where $\psi_n e^{-iE_nt}$ are normalised eigen-solutions of the time-dependent Hamiltonian before $t=t_0$. The initial conditions are $\psi_i(t_0)=1$, $\psi_i(t_0)=0$ for $j\neq i$ the system is in the state. By introducing (3.1) in the Hamiltonian equation

$$ik \frac{\partial \Psi}{\partial t} = H \Psi$$
 (3.2)

we obtain for $\mathcal{L}_n(t)$ a set of time coupled equations. When t increases to infinity the system tends to equilibrium. At the limit, $t=+\infty$, the expected results are obtained: $\mathcal{L}_n(\infty)$ represents the probability to be in the state n after the perturbation.

The same method can be applied for the continuum by changing (3.1) into the integral

$$\Psi_{\Gamma}(t) = \sum_{\Gamma} \int dE \frac{1}{\sqrt{2\pi}} \Psi_{\Gamma}(E) e^{-iEt} f_{\Gamma\Gamma_{o}}(E,t) \quad (3.3)$$

 $\psi_{\Gamma}(E)$ is the antisymmetric function defined by (2.10) to which corresponds $F_{\Gamma\Gamma'}(S,r)$,(2.26). The coefficient $\frac{1}{\sqrt{2\pi}}$ has been introduced so that the function $\frac{1}{\sqrt{2\pi}}\psi_{\Gamma}(E)$ is normalised to the Dirac function in energy (see : (2.35)).

3-2 Initial conditions

At the time $t_0=0$ the colliding electron is far from the ion and can be described as a wave packet having a dispersion $\delta << 1$, around $\gamma = \overline{\zeta}$, and an energy $E = \widetilde{E}_0$, $(\gamma_0 \delta)$ being large). The electron-ion system is in the state Γ_0 , E is nomore an eigen-value.

$$\Gamma_{o} = \left(\text{nolokol'oSoLoMsoMLo} \right)$$

$$E = E_{\text{nolo}}^{+} + \frac{\lambda^{2}}{2}, \quad \widetilde{E}_{o} = E_{\text{nolo}}^{+} + \frac{\tilde{\kappa}^{2}}{2}$$

$$(3.4)$$

The probability coefficient $f_r(E,t)$ for $t=t_o=0$ represents the wave packet as defined.

$$f_{\Gamma\Gamma_o}(E,0) = \frac{\partial (\Gamma,\Gamma_o) \left(\frac{2\delta^3}{\pi R_o}\right)^2}{(k-\tilde{k}_o)^2 + \delta^2} \exp(ix_o)$$
 (3.5)

the definition of X_o can be deduced from (2.17). $\int_{\Gamma\Gamma_o} (E,o)$ is normalised as:

$$\sum_{r} \int_{r} dE \left| f_{rr_{o}}(E_{10}) \right|^{2} = 1$$
 (3.6)

and using (2.10)

and (2.7) we obtain

$$\Psi_{r_0}(0) = A \Phi_{r_0}(x, \hat{x}_2\sigma_2) \frac{\delta^{1/2}}{r_2} \exp(-i(x_0 - \hat{x}_0) - |x_2 - x_0|\delta)$$
 (3.7)

where ${\mathcal H}$ is the classical antisymmetrisation operator.

Then we have

$$(\Psi_{r_0}(0)|\Psi_{r_0}(0)) = 1$$
 (3.8)

3-3 Time coupled equations

The Hamiltonian for the interaction of the radiation field with an atom is , at the first order:

$$H = - \alpha \overrightarrow{A} \cdot \overrightarrow{P}$$
 (3.9)

 \forall is the fine structure constant, \overrightarrow{A} the vector potential and \overrightarrow{P} the momentum of the atomic electrons.

A multipole expansion of the radiation field can be done, (Rose, 1955, and Shore & Menzel, 1968) after which only the dipole electric term is considered. Then the radiation field is quantized and we can calculate matrix elements between free states without a photon and bound states with a photon.

 Γ E corresponds to an initial free state represented by the coupling Γ and the energy E. Similarly Γ represents the final bound state.

During the interaction all the bound states plus photon must be considered, included those for an energy $\Omega \neq \Xi$.

$$\Omega = E_{\Pi} + \omega_{\Pi}$$
 (3.11)

where ω_r , is the photon energy. In the resonance energy region ω_r , is pratically constant compared to $(\Gamma E \| \mathcal{R} \| \Gamma')$, so we shall neglect the slow dependence of \mathcal{H}_{rr} , over Ω .

Let us introduce the probability density $|g_{\Gamma}(\Omega,t)|^2$ that a photon, with a frequency ω_{Γ} , has been emitted leaving the electron-ion system in the bound state Γ' . With this definition of $g_{\Gamma}(n,t)$, the former hypothesis and (3.3) the time coupled equations are:

$$\frac{d}{dt} f_{r}(E,t) = i e^{iEt} \sum_{r'} \left\{ d\Omega \mathcal{H}_{rr'}(E) e^{-i\Omega t} g_{r'}(\Omega,t) \right\}$$

$$\frac{d}{dt} g_{r'}(\Omega,t) = i e^{i\Omega t} \sum_{r'} \left\{ dE \mathcal{H}_{rr'}^{*}(E) e^{-iEt} f_{r}(E,t) \right\}$$
(3.12)

where

in the formula (3.10) and in the definition of $g_{\Gamma}(\Omega,t)$ we do not specify M_L and M_S for the dipole interaction is a Racah tensor. If it is necessary to specify M_L , M_S the corresponding probability is $g_{\Gamma}(n,t)$ multiplied by $C_{M_L}^{L_1L_L} \delta_{SS}$, $\delta_{M_SM_S}$, $\delta_{M_SM_S}$, is called the reduced tensor component.

For simplicity we shall use matrix algebra. Let's introduce $f(\varepsilon,t)$ and $g(\Omega,t)$ which represent respectively the n-column matrix of the $f_{r}(\varepsilon,t)$ and the p-column matrix of the $g_{r}(\Omega,t)$ ("n" corresponds to the number of channels for the free solutions and "p" is the number of bound states into which the system may recombine after photo-emission). We have also to introduce $f(\varepsilon,t)$ and $g(\Omega,t)$ for the $\frac{d}{dt}f_{r}(\varepsilon,t)$ and $\frac{d}{dt}g_{r}(\Omega,t)$. $f(\varepsilon)$ and $f(\varepsilon)$

Then we have

$$f(E,t) = ie^{iEt} H(E) \int d\Omega e^{-i\Omega t} g(\Omega,t)$$

 $g(\Omega,t) = ie^{i\Omega t} \int dE H^{\dagger}(E)e^{-iEt} f(E,t)$ (3.14)

For convenience in the calculus Davies and Seaton introduced the following matrices:

$$F(t) = i \int dE \mathcal{H}^{t}(E) e^{-iEt} f(E,t)$$

$$G(t) = i \int d\Omega e^{-i\Omega t} g(\Omega,t)$$
(3.15)

Then

$$e^{-iEt} \hat{f}(E|E) = \mathcal{H}(E) G(E)$$

$$e^{-i\Omega t} \hat{g}(\Omega,t) = F(E)$$
(3.16)

3-4 Dielectronic recombination

Now in the case of dielectronic recombination

$$g(\Omega, 0) = 0 \tag{3.17}$$

(For photoionisation initial condition see 3-8)

By integrating the two equations (3.16) we have

$$f(E,E) = \mathcal{H}(E) \begin{cases} d\tau e^{iE\tau}G(\tau) + f(E,0) \\ d\tau e^{i\Omega\tau}G(\tau) \end{cases}$$

$$g(\Omega,E) = \int_{0}^{E} d\tau e^{i\Omega\tau}F(\tau)$$
(3.18)

Then by substituing (3.18) into (3.15)

$$F(t) = i \int dE H^{\dagger}(E) e^{-iEt} \left\{ H(E) \int dz e^{iEz} G(z) + f(E,0) \right\}$$

$$G(t) = i \int dz e^{-izt} \int dz e^{izz} F(z)$$
(3.19)

By interchanging the order of integration and using the relation

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\Omega e^{i\Omega x}$$
 (3.20)

we obtain

$$G(t) = 2\pi i \int_{0}^{t} \delta(\tau - t) F(\tau) d\tau = \pi i F(t)$$
 (3.21)

(3.21) contains the hypothesis that $\mathcal{L}(E)$ is independent of Ω .

Now from (3.18) and (3.21) we get

$$f(E,t) = i\pi \mathcal{H}(E) g(E,t) + f(E,0)$$
 (3.22)

In the following part we shall derive the formula for $\Im(E,\infty)$: From (3.18),(3.19) and (3.21) we have

$$F(t) = \int dE \mathcal{H}^{\dagger}(t) e^{-iEt} \left\{ i f(E, 0) - \pi \mathcal{H}(t) \int_{0}^{t} d\tau e^{iE\tau} F(\tau) \right\}$$
(3.23)

We define the Laplace transform of F(t) as

$$\phi(s) = \int_{0}^{\infty} dt e^{-st} F(t)$$
 (3.24)

We have $g(\Omega, \infty) = \lim_{\epsilon \to 0} \varphi(-i\Omega + \epsilon)$ ($\epsilon > 0$)

By integrating (3.23) we obtain

$$\left\{ 1 + L(S) \right\} \phi(S) = M(S) \qquad (3.25)$$

where

$$L(s) = \pi \int dE \frac{\mathcal{H}^{+}(E) \mathcal{H}(E)}{s+iE}$$

$$M(s) = i \int dE \frac{\mathcal{H}^{+}(E) \mathcal{H}(E)}{s+iE}$$
(3.26)

Using the definition (3.5) of f(E,o) Davies and Seaton proved that

$$\lim_{\epsilon \to 0} \mathcal{M}\left(-i\Omega + \epsilon\right) = 2i\pi \mathcal{H}^{+}(\Omega)f(\Omega,0) \quad (3.27)$$

$$(\epsilon > 0)$$

thus

$$g(\Omega, \infty) = 2i\pi \left\{1 + \frac{\pi}{2}(\Omega)\right\}^{-1} \mathcal{H}^{+}(\Omega) f(\Omega, 0)$$
 (3.28)

Hence from (3.22) we have

$$f(E,\infty) = \left[1 - 2\pi^2 \mathcal{H}(E) \left\{1 + \tilde{\chi}(E)\right\}^{-1} \mathcal{H}^{\dagger}(E)\right] f(E,0)$$
 (3.29)

where
$$Z(\Omega) = \lim_{\epsilon \to 0} \frac{\pi}{i} \left(d\epsilon \frac{\mathcal{H}^{+}(\epsilon) \mathcal{H}(\epsilon)}{\epsilon - \Omega - i\epsilon} \right)$$
 (3.30)

3-5 Generalised & matrix

In collision theory the element $S_{\eta^!\eta}$ of the \sum matrix is the probability that an electron arriving in the channel Γ leaves in the channel Γ' . Therefore if we neglect the radiation field interaction we have

This is the row matrix of the probability flux of outgoing electrons corresponding to the initial condition f(E, O)

If the radiation field interaction is included (3.31) becomes

By using (3.29), (3.32) can be expressed in a function of f(E,0)

$$S \left\{ 1 - 2\pi^{2} \mathcal{H} \left[1 + Z \right]^{-1} \mathcal{H}^{+} \right\} f(E,0)$$
 (3.33)

We define a generalised S matrix which includes photo-interaction. Then in the case of collision scattering without photon emission the old S matrix is modified to:

$$S^{(e,c)} = S\{1-2\pi^2\mathcal{H}[1+z]^{-1}\mathcal{H}^{+}\}$$
 (3.34)

The difference of flux between (3.31) and (3.32) corresponds to the recombination flux into bound states with the emission of a photon.

$$g(E,\infty) = 2\pi i \left[1+Z\right] \mathcal{H}^{\dagger} f(E,0)$$
 (3.35)

This gives the \(\frac{\dagger}{2} \) matrix for photo-recombination as

$$S^{(PR)} = 2\pi i \left[1 + Z \right]^{-1} \mathcal{H}^{\dagger}$$
 (3.36)

3-6 Unitarity of the generalised & matrix

In their paper Davies and Seaton proved the useful formula

$$Z + Z^{+} = 2\pi^{2} \mathcal{H}^{+} \mathcal{H}$$
 (3.37)

Using (3.37) it is easy to check the unitarity of the generalised matrix

$$S^{(e,e)+}S^{(e,e)} + S^{(p,e)+}S^{(p,e)} = 1$$
 (3.38)

3-7 Commentary on the former method

In the case of dielectronic recombination the timedependant perturbation theory is very suitable since at the beginning the colliding electron and the ion are far apart and that
the electron is in the static asymptotic coulomb potential of
the ion. But this reason is not enough for determining the choice
between first order perturbation theory and time dependant perturbation theory. The difference between these two theories is that
the first doesn't conserve the flux of electron when the second
does. This is particularly important for large quantum number

resonance (say resonance "n") where the probability of capture in the first theory is constant with n, in the second theory it decreases rapidly. And has for inconsent to give for the first theory a divergent expression for the dielectronic recombination rate.

3-8 Photoionisation

The difference between dielectronic recombination and photoionisation is found in the initial boundary condition: i.e.

$$f(E,0) = 0$$
 (3.39)

instead of (3.17).

By integrating the two equations ,(3.16), we have

$$f(E,E) = \#(E) \int dz \, e^{iEz} \, G(z)$$

$$g(x,E) = \int_{0}^{E} dz \, e^{i\Omega z} \, F(z) + g(x,0)$$
(3.40)

and by substituing (3.40) in (3.15)

$$G(t)=i\int d\Omega e^{-i\Omega t} \left[\int_0^t d\tau e^{i\Omega \tau} F(\tau) + g(\Omega,0)\right] (3.41)$$

this gives

$$G(t) = \pi i F(t) + i \int d\Omega e^{-i\Omega t} g(\Omega, 0)$$
 (3.42)

Now using (3.40) and (3.42)

$$f(E,t) = \pi i \mathcal{H}(E) \int_{0}^{t} d\tau e^{iE\tau} F(\tau) + i \mathcal{H}(E) \int_{0}^{t} d\tau e^{iE\tau} \int_{0}^{t} d\Omega e^{-i\Omega\tau} g(\Omega,0)$$
(3.43)

and by using also the same kind of argument as Davies and Seaton we finally obtain

$$f(E,\infty) = i\pi \mathcal{H}(E) \left(g(E,\infty) + g(E,0) \right)$$
 (3.44)

and

$$g(\Omega,\infty) = (1-2(\Omega))(1+2(\Omega))\frac{-1}{g(\Omega,0)}$$
 (3.45)

this gives from (3.44)

$$f(E,\infty) = 2\pi i \mathcal{H}(E) (1+Z(E))^{-1} g(E,0)$$
 (3.46)

The symmetry of the two processes is evident by comparing (3.28) and (3.46)

As in 3-5 we shall now define new elements of the generalised \lesssim matrix:

$$S^{(P,P)} = (4-2)(4+2)^{-1}$$
 (3.47)

and

$$S^{(e,h)} = 2\pi i S H (1+Z)^{-1}$$
 (3.48)

The generalised
$$\frac{S}{S}$$
 matrix is now completely defined $\frac{S}{S}$ (e,e) $\frac{S}{S}$ (e,e) $\frac{S}{S}$ (e,e) $\frac{S}{S}$ (p,e) $\frac{S}{S}$ (p,e) $\frac{S}{S}$ (p,e) $\frac{S}{S}$ (p,e) $\frac{S}{S}$ (p,e) $\frac{S}{S}$ is a (n+p,n+p) matrix.

From (3.34), (3.36), (3.47) and (3.48) it is easy to deduce

$$(S^{G})^{+}S^{G} = S^{G}(S^{G})^{+} = 1$$
 (3.50)

Hence the $\sum_{i=1}^{G}$ matrix is unitary (but not symmetric) .

CHAPTER IV

Study of the collision resonance structure for He+ + e-

In order to represent a resonance curve by a mathematical formula, Wigner (1946) studied the solutions of the quantum theory equations in function of energy. By fixing appropriate boundary conditions he succeeded in developing the solutions as a Taylor series in the energy. From there Wigner and Eisenbud (1947) defined the "R matrix theory" from which in turn, much later, Gailitis (1963) deduced equivalent results to those obtained in this chapter.

At the same time Jost (1947) studied the analyticity of the scattering \lesssim matrix as a function of energy. He pointed out that the equations had already been studied by Poincare (1884) who had proved the analyticity of the solutions satisfying boundary conditions for more general differential equations.

Later Ham (1955), who was interested by the possibility of numerical results, applied the analytical properties to the case of a short range potential combined with a Coulomb field. Following Ham's idea Seaton (1958) proved the possibility of extrapolating the quantum defect to the elastic phase shift.

In 1966 Seaton generalised the former theory to obtain numerical results for the radial coupled equations problem.

Hence in 1969 he came back to the Wigner problem finding a more accurate resonance formula for ion-electron collision resonance.

The formula contains unknown parameters that are slowly varying with energy and can be estimated by solving the coupled equations for a few energies.

Seaton's method gives very good results for many practical cases. But in the case of He⁺ + e⁻, due to the degeneracy of the "2s" and "2p" states, the long range interaction apart from the Coulomb potential are too important to neglect as Seaton's theory does. To improve the method for this case Bely (1966) used a diagonalisation method which includes the most important long range potential into the centrifugal terms. The same idea had already been used by Seaton (1961) for improving the Born Approximation.

Bely's formulation of the problem is difficult to use therefore in this chapter we shall try to simplify it by adding a few mathematical hypothesis that are justified in practice. This shall also allow us to deduce a resonance formula similar to Seaton (1969). In the next chapter we shall use the former formula applied to the dielectronic recombination problem.

4-2 Coupled radial equations

We shall be interested only by the energy region around the first threshold of He⁺ excitation where it should be a good approximation to include in (2.10) only three ionic functions corresponding to the "1s", "2s" and "2p" states. For a total angular momentum \(\begin{array}{c} \dots \end{array} \) the system reduces to three equations and for \(\beta \dots \end{array} \) to four .

The following initial and final channels correspond to the equations (2.12) :

$$\Gamma_{1} = (1s k_{1}, l_{1}=L, LS M_{L} M_{S})$$

$$\Gamma_{2} = (2s k_{2}, l_{2}=L, LS M_{L} M_{S})$$

$$\Gamma_{3} = (2p k_{3}, l_{3}=L+1, LS M_{L} M_{S})$$

$$\Gamma_{4} = (2p k_{4}, l_{4}=L-1, LS M_{L} M_{S})$$

(for L=0 , Γ_4 doesn't exist)

The "2s" and "2p" states are degenerate for He⁺: $k_2 = k_3 = k_4$ Using the indice λ for representing $\Gamma_{\tilde{t}}$ (2.12) becomes:

where $E_i = k_i^2$. j represents the initial channel and i the final channel.

4-3 Analyticity

As we wrote in (2.18) we consider only the solutions having the following physical property

$$F_{ij}(o) = 0 \tag{4.2}$$

The solution vector space has the dimension N=4 or 3 Now if we take $F_{i,j}$ ($E_i r$) analytic in energy E in the neighbourhood of Y=0 it can be proved (Ham, 1955, and Seaton, 1966) that $F_{i,j}(E_i r)$ is analytic for any finite Y.

Let $F(E_ir)$ be a matrix made of R independent column matrix solutions satisfying the former condition. They form a basis set and any other basis set can be obtained from $F(E_ir)$ by a matrix transformation.

4-4 Asymptotic potential

For \checkmark increasing $\bigcup_{i,k}(r)$ tends to zero . It is possible to expand $\bigcup_{i,k}(^{\circ})$ as follow:

$$U_{ik}(r) = \sum_{m=2}^{\infty} \frac{\alpha'_{ik}}{\gamma^m} \qquad r \geqslant r_0 \qquad (4.3)$$

In general $\alpha_{i,k}^{(m)}$ is small and in Seaton (1966) and (1969) it is assumed that for $\gamma > \gamma_0$ $U_{i,k}(\gamma) = 0$.

The states "2s" and "2p" being degenerate then the dipole interaction between these states is very strong and the former hypothesis is not valid at all. Following Bely (1966) (but also Seaton (1961) and Gailitis (1963)) we shall not neglect the elements $\alpha_{i,k}^{(k)}$ for i and k equal to 2,3,4. All the other interactions (for $k \neq 1$) will be neglected.

For r > r (4.1) takes the following form :

$$\left\{\frac{d^2}{dr^2} + \frac{2}{r} + \epsilon\right\} F(r) = \frac{1}{r^2} A F(r)$$
 (4.4)

where

$$A = \begin{pmatrix} l_{1}(l_{1}+1) & 0 & 0 & 0 \\ 0 & l_{2}(l_{2}+1) & d_{32} & d_{42} \\ 0 & d_{32} & l_{3}(l_{3}+1) & 0 \\ 0 & d_{42} & 0 & l_{4}(l_{4}+1) \end{pmatrix}$$
 (4.5)

 $\stackrel{ extstyle e$

where O^{T} is the transpose matrix of O.

and \triangle is diagonal.

The first row and first column of \bigwedge being already diagonalised the first row and first column of \bigvee will be zero excepted $O_{11}=1$.

The former property of the matrix $\overset{\bigcirc}{\circ}$ is fundamental in that

$$\overset{\circ}{O}_{\perp} \in = \overset{\circ}{E} \overset{\circ}{O}_{\perp}$$

Now let's define

$$G = O F$$
 (4.8)

we obtain from (4.4)

$$\gamma^{2}\left\{\frac{d^{2}}{dr^{2}}+\frac{2}{r}+\epsilon\right\}G=\alpha G \qquad r\geqslant r_{0} \qquad (4.9)$$

by defining Δ_i from $\Delta_{ii} = \lambda_i (\lambda_i + 1)$ the equation (4.9) takes the coulombic form

$$\left\{\frac{d^2}{dr^2} - \frac{\lambda_i(\lambda_i+1)}{r^2} + \frac{2}{r} + \epsilon_i\right\} \epsilon_{ij}(r) = 0 \qquad r \ge r_0$$

 λ_i is not necessary integer and can be real or complex having the form $\lambda_i = -\frac{1}{2} + i \overline{\lambda}$ where $\overline{\lambda}$ is real.

4-5 Solutions of the coulombic equation

a) Analytic solutions

In this part we shall study the solutions of

$$\left\{\frac{d^2}{dr^2} - \frac{\lambda_i(\lambda_i+1)}{r^2} + \frac{2}{r} + \epsilon_i\right\} \mathcal{Y}(\epsilon,\lambda,r) = 0 \qquad (4.11)$$

for any \checkmark , λ being real or $\lambda = -\frac{1}{2} + i \overline{\lambda}$ with $\overline{\lambda}$ real.

In Seaton's paper (1958) he defined for any $\in \mathcal{A}$ \checkmark two functions analytic in energy \in :

$$\exists_{1}(\varepsilon \Delta r) = \frac{\kappa^{2+1}}{r(2\lambda+2)} \quad M_{K, 2+\frac{1}{2}} \left(\frac{2n}{\kappa}\right)
\exists_{2}(\varepsilon \Delta r) = \frac{\kappa^{-2}}{r(-2\lambda)} \quad M_{K, -2-\frac{1}{2}} \left(\frac{2n}{\kappa}\right)$$
(4.12)

where $\epsilon = k^2 = -\frac{1}{\kappa^2}$ and $M_{\kappa,m}(\rho)$ had been defined by Whittaker and Watson (1946).

For $\epsilon > 0$ we take k = ig with g > 0 and for $\epsilon < 0$ $k = \gamma$ with $\gamma > 0$.

 β_1 and β_2 are linearly independant excepted for β_2 , β_1 integer :

$$\beta_2(\epsilon \ell r) = -A(\epsilon \ell) \, \beta_1(\epsilon \ell r)$$
(4.13)

with

$$A(E\lambda) = \frac{\Gamma(K+\lambda+1)}{K^{2\lambda+1}\Gamma(K-\lambda)}$$
(4.14)

Studying $A(\in \lambda)$ for λ real and $\lambda = \frac{1}{2} + i\lambda$ we find that $A(\in \lambda)$ is slowly varying with energy in the neighbourhood of $\epsilon = 0$ (for more details see Appendix 1)

b) Asymptotic form

The physical solutions have asymptotic boundary conditions (see (2.21) and (2.23))

We shall study $\mathcal{J}_{1}(\in \mathcal{N}_{\Gamma})$ and $\mathcal{J}_{2}(\in \mathcal{N}_{\Gamma})$ for \mathcal{N} large so as to relate them to these physical solutions.

The asymptotic form of the Whittaker $\mathcal{N}_{\kappa,m}(\ell)$ function is found in Slater (1960).

1) E negative

For $K=\mathcal{V}$ a difficulty arises: the function $M_{\mathcal{V},\infty}(\frac{2r}{\mathcal{V}})$ is double valued and the asymptotic form of both of them is complex. But we know by developing $M_{\mathcal{V}_m}(\mathcal{V})$ in a series, for λ real, that $M_{\mathcal{V}_m}(\mathcal{V})$ is real for any finite \mathcal{V} . Further we find, in this case, that the imaginary part of Slater's asymptotic formula must be neglected compared to the real divergent part. Hence we deduce that the imaginary part, for λ real, is meaningless.

For $\lambda = -\frac{1}{2} + i \tilde{\lambda}$ the problem is still not solved. But it can be seen that $\mathcal{M}_{\vee m}(\underline{w})$ is given by the same expression for λ real or $\lambda = -\frac{1}{2} + i \tilde{\lambda}$. We shall suppress the corresponding part. We check that this term is convergent to zero and that the formula obtained after this operation is not in contradiction with any relation between β , and β_2 .

Thus for any λ real or $\lambda = \frac{1}{\lambda} \sqrt{\lambda}$ we have :

$$\frac{\exists (\epsilon \lambda r) \sim \nu^{\lambda+1} \left[\frac{\xi}{\Gamma(\lambda+1-\nu)} + \frac{\Theta \cos \pi(\nu-\lambda-1)}{\Gamma(\lambda+1+\nu)} \right]}{\frac{\xi}{\Gamma(-\lambda-\nu)} + \frac{\Theta \cos \pi(\nu-\lambda-1)}{\Gamma(-\lambda+\nu)}}$$

$$(4.15)$$

(the sine and sosine are defined for complex arguments) where

$$\xi = e^{\frac{r}{\nu}} \left(\frac{2r}{\nu} \right)^{-\nu}$$

$$\theta = e^{-\frac{r}{\nu}} \left(\frac{2r}{\nu} \right)^{\nu}$$
(4.16)

Let's introduce

$$K(\nu, \lambda) = \frac{1}{\nu \left\{ \Gamma(\nu + \lambda + i) \Gamma(\nu - \lambda) \right\}^{1/2}}$$
(4.17)

 $K(\nu,\lambda)$ is real and positive for any λ real or $\lambda = -\frac{1}{2} + i\bar{\lambda}$. For $\lambda = -\frac{1}{2} + i\bar{\lambda}$:

$$K(\nu,\lambda) = \frac{1}{\nu |\Gamma(\nu + \frac{1}{2} - i\bar{\lambda})|}$$
 (4.18)

(for more details about $K(\vee,\lambda)$ see Appendix 2) Let's define

$$S^{\circ} = \sqrt{\frac{\pi}{2}} \left(\frac{y_1 A^{\frac{1}{2}} - y_2 A^{-\frac{1}{2}}}{2 \cos \pi \lambda} \right)$$

$$C^{\circ} = -\sqrt{\frac{\pi}{2}} \left(\frac{y_1 A^{\frac{1}{2}} + y_2 A^{-\frac{1}{2}}}{2 \sin \pi \lambda} \right)$$
(4.19)

from (4.15) it is easy to deduce :

The functions λ° and C° are linearly independent coulombic solutions for any λ (real or $\lambda = -\frac{1}{2} + i \overline{\lambda}$). They are not analytic but vary slowly with E since $A(E\lambda)$ is slowly varying with E. For $\lambda = \ell$ multiplying λ° and C° by $(-1)^{1}$ we obtain the solutions defined by Eissner et al. (1969).

2) E positive

d) <u>λ real</u>

From the asymptotic form of $\mathcal{M}_{km}(p)$ we obtain

By neglecting $e^{-2\pi \zeta}$ compared to 1 we have

$$\Gamma(i\gamma-\lambda)\Gamma(1+\lambda-i\gamma) \sim \frac{2\pi}{e^{\pi\gamma}} \frac{2\pi}{(2\lambda+i)}$$
 (4.22)

Then

$$5^{\circ} \sim 8^{\frac{1}{2}} \sin \left\{ kr + \frac{\lambda \pi}{2} + 8 \log 2 kr + arg \Gamma(\lambda + 1 - i8) \right\}$$
 (4.23)
 $c^{\circ} \sim 8^{\frac{1}{2}} \cos \left\{ kr + \frac{\lambda \pi}{2} + 8 \log 2 kr + arg \Gamma(\lambda + 1 - i8) \right\}$

$$\beta) \quad \frac{\lambda = -\frac{1}{2} + i \, \overline{\lambda}}{\text{Using the same approximation (} e^{-2\pi i \lambda} \ll 1 \text{) we have}}$$

$$S_{0} \sim \chi^{\frac{1}{2}} \sin \left\{ kr + \chi \log 2kr - \frac{\pi}{4} + \varphi(\bar{\lambda}, \chi) \right\}$$

$$C_{0} \sim \chi^{\frac{1}{2}} \cos \left\{ kr + \chi \log 2kr - \frac{\pi}{4} + \varphi(\bar{\lambda}, \chi) \right\}$$

$$(4.24)$$

with

$$\varphi(\bar{\lambda}, \aleph) = \frac{\arg \Gamma\left(\frac{1}{2} - i(\gamma + \bar{\lambda})\right) + \arg \Gamma\left(\frac{1}{2} - i(\gamma - \bar{\lambda})\right)}{2}$$
(4.25)

At the threshold, $\epsilon = 0$, the coulombic solutions becomes Bessel functions (see Seaton (1958) formulae (18),(19)) By using the asymptotic form of the Bessel functions we deduce

$$J_{1} \sim \sqrt{\frac{2}{\pi}} \left(\frac{r}{2}\right)^{\frac{1}{4}} \sin\left(\sqrt{8r} - \Delta\pi - \frac{\pi}{4}\right)$$

$$J_{2} \sim \sqrt{\frac{2}{\pi}} \left(\frac{r}{2}\right)^{\frac{1}{4}} \sin\left(\sqrt{8r} + (\Delta+1)\pi - \frac{\pi}{4}\right)$$

$$(4.26)$$

This gives

$$S^{\circ} \sim \left(\frac{r}{2}\right)^{\frac{1}{4}} \sin\left(\sqrt{8r} - \frac{\pi}{4}\right)$$

$$C^{\circ} \sim \left(\frac{r}{2}\right)^{\frac{1}{4}} \cos\left(\sqrt{8r} - \frac{\pi}{4}\right)$$

$$(4.27)$$

c) Commentary on & and Co

When we studied the asymptotic form we found it simple and convenient to define the solutions \mathcal{S} and \mathcal{C}^3 : They are linearly independant for any λ . They are continuous on the variable λ (this will be particularly important in the case of collision ion-electron with large angular momentum when all the λ converge to integer). These solutions are not analytic but slowly varying with energy. For $\mathcal{E} \geqslant 0$, they are inquadrature of phase which is of fundamental importance in the following part, 4-7.

4-6 Slowly varying matrices

The transformation from F to G is given by the matrix G which is constant with energy. Hence the matrix G will be, like F, analytic in energy.

We introduce the new set of coulombic solutions

The functions A_1^* and C_1^* are defined so as to coincide with the classical $\sin(x_1)$ and $\cos(x_1)$ where

$$X_1 = k_1 r - \frac{\ell_1 \pi}{2} + \chi_1 \log 2k_1 r + \arg \Gamma(\ell_1 + 1 - i\chi_1)$$

For $r \gg r_0$ we expand \subseteq on the slowly varying functions \triangle^* and C^* :

$$G_{ij}(r) = s_{ij}^* A_{ij} + c_{ij}^* B_{ij}$$
 (4.29)

A; and B; are then slowly varying matrix elements.

4-7 <u> 9- matrix</u>

The \mathfrak{R} matrix is defined as

$$\mathcal{A} = \mathcal{B} \mathcal{A}^{-1} \tag{4.30}$$

 \mathcal{A} is symmetric and real (see Appendix 3) From (4.30) we see that \mathcal{A} is also slowly varying with energy.

4-8 Resonance structure

a) General formula

The \Re matrix has the same properties as the reactance matrix, \Re matrix, this will allow us to use the method developed by Seaton (1969).

We define

$$\chi = (1 + i g)(1 - i g)^{-1}$$
 (4.31)

 \mathcal{S} being real and symmetric $\overset{\times}{\sim}$ is unitary and symmetric.

 $\frac{\mathcal{L}}{\mathcal{L}}$ varying slowly, $\frac{\mathcal{L}}{\mathcal{L}}$ also varies slowly with energy. Corresponding to the $\frac{\mathcal{L}}{\mathcal{L}}$ matrix in Seaton (1969) let's define $\frac{\mathcal{L}}{\mathcal{L}}$ so that $\frac{\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{L}}{\mathcal{L}}$ when all the channels are open.

$$G(\Sigma,r) \sim \phi^{-} - \phi^{+} \Sigma$$
 (4.32)

where for $k_2^2 > 0$ (all channels opened) and j=1,2,3,4

$$\phi_{+}^{\dagger} = c_{+}^{*} + i s_{+}^{*}, \quad \phi_{-}^{\dagger} = c_{-}^{*} - i s_{+}^{*}$$
 (4.33)

and for $k_i^2 < 0$, j=2,3,4

$$\Phi_{\downarrow}^{\pm} = \left(\frac{2r}{V_2}\right)^{\pm V_2} e^{\mp \frac{r^2}{V_2}}$$

$$(4.34)$$

 ϕ_{Λ}^{\pm} stays unchanged.

We can write \sum_{∞} as follow:

$$\sum_{n=0}^{\infty} = a \left(1 - T \mathcal{A} \right) \left(1 + C \mathcal{A} \right)^{-1} d$$
 (4.35)

The definition of α , β , T, C are given in table 4*1 Following Seaton (1969) we define

$$Z = (1 - T g)(1 + (g)^{-1}$$
 (4.36)

By eliminating \mathcal{L} between (4.31) and (4.36) we have

$$Z \left\{ (1+iC) + (1-iC)X \right\} = (1+iT)X + (1-iT)(4.37)$$

We partition Z, X, C and T in open and closed parts:

	K; = & V;	
a	1.	Van King comni
	1.	<u>і лК; v/2</u> V2т sm лv;
The second state of the se		tan _{Tr} vi
Experience and a second of the control of the contr	- 1	cot Tri

TABLE 4*1

$$Z = \begin{pmatrix} Z_{00} & Z_{0c} \\ Z_{co} & Z_{cc} \end{pmatrix} \qquad X = \begin{pmatrix} X_{00} & X_{0c} \\ X_{co} & X_{cc} \end{pmatrix}$$

$$Z = \begin{pmatrix} -i & 0 \\ 0 & c \end{pmatrix} \qquad T = \begin{pmatrix} -i & 0 \\ 0 & t \end{pmatrix}$$

$$Z = \begin{pmatrix} -i & 0 \\ 0 & t \end{pmatrix}$$

we obtain from (4.37) four equations

$$2Z_{00} + Z_{0c} (1-ic) \chi_{c0} = 2\chi_{00}$$

$$Z_{0c} [(1+ic) + (1-ic) \chi_{cc}] = 2\chi_{0c}$$

$$2Z_{c0} + Z_{cc} (1-ic) \chi_{c0} = (1+it) \chi_{c0}$$

$$2Z_{cc} [(1+ic) + (1-ic) \chi_{cc}] = (1-it) + (1+it) \chi_{cc}$$

$$2Z_{cc} [(1+ic) + (1-ic) \chi_{cc}] = (1-it) + (1+it) \chi_{cc}$$

By eliminations \sum_{oc} and \sum_{cc} between these equations we have

$$\frac{Z_{00} = \chi_{00} - \chi_{0c} (\chi_{cc} - e^{-2\pi i \nu})^{-1} \chi_{co}}{Z_{co} = (it - 1) (\chi_{cc} - e^{-2\pi i \nu})^{-1} \chi_{co}}$$
(4.40)

where

$$e^{-2\pi i \lambda} = \frac{(1-it)}{(1+it)} = \frac{(1+ic)}{(1-ic)}$$
 (4.41)

b) Degenerate closed channels

Since the closed channels are degenerate in the case of ${\rm He}^+ + {\rm e}^-$, ${\rm e}^{-2\pi i \, \nu}$ is a multiple of the unit matrix

 $\chi_{\rm cc}$ being symmetric can be diagonalised thus :

$$\begin{array}{ccc}
\times_{cc} &= & \times & \times'_{cc} \times^{\mathsf{T}} \\
\times & \times^{\mathsf{T}} &= & \times^{\mathsf{T}} \times &= & 1
\end{array}$$
(4.42)

Therefore we have

$$\frac{Z_{00}}{Z_{00}} = \chi_{00} - \chi'_{0c} (\chi'_{cc} - e^{-2\pi i \nu})^{-1} \chi'_{co}$$

$$\frac{Z'_{co}}{Z_{co}} = (it - 1) (\chi'_{cc} - e^{-2\pi i \nu})^{-1} \chi'_{co}$$
(4.43)

where

$$\chi'_{oc} = \chi_{oc} \times , \chi'_{co} = \chi^{T} \chi_{co} , \chi'_{co} = \chi^{T} \chi_{co} , \chi'_{co} = \chi^{T} \chi_{co}$$
 (4.44)

From the unitarity of the $\sum_{i=1}^{\infty}$ matrix we get :

$$X^{+}X = \chi^{\prime *}_{cc} \chi^{\prime}_{cc} + \chi^{\prime *}_{cc} \chi^{+} \chi \chi^{\prime}_{cc}$$
 (4.45)

with $\underset{\sim}{\times}^+ = (\underset{\sim}{\times}^{\mathsf{T}})^{\mathsf{X}}$ ($\underset{\sim}{*}$: complex conjuguate) Now if we write the eigenvalues of $\underset{\sim}{\times}_{\mathsf{cc}}$ as follow:

$$\chi'_{PP} = e^{2\pi i \gamma_P} \tag{4.46}$$

where

$$V_P = d_P + i \beta_P$$
 (4.47)

we deduce from (4.45)

$$|\chi'_{pp}| \leq 1$$
 or $\beta_p \geqslant 0$ (4.48)

Seaton (1969) called γ_P the complex quantum defect.

If we denote the closed channels by ρ and q , and the only open channel by 1 , we can write

$$Z_{P1} = (it-1) \sum_{q} \frac{X_{pq} X'_{q1}}{X'_{qq} - e^{-2\pi i \nu}}$$
 (4.49)

The elements of χ , χ_{cc} , χ_{cc} , matrices vary slowly with energy.

Finally we obtain for \sum_{P}

$$\sum_{p_{1}} = i \sqrt{2\pi} v^{3/2} e^{-i\pi v} K_{p} \frac{\sum_{q_{1}} \frac{\chi_{q_{1}}}{\chi_{q_{2}}^{2} - e^{-2\pi i v}}}{\chi_{q_{2}}^{2} - e^{-2\pi i v}}$$
(4.50)

4-9 Bound states in the case of degenerate closed channels

We shall study the bound state case as the limiting case to which converges the open-closed channels problem when the interaction between open and closed channels is very small.

In this case χ_{cc} is unitary . From (4.45) we obtain

$$\chi'^{\star}_{cc} = \chi^{\prime -1}_{cc}$$

that gives

$$|\chi'_{PP}| = 1 \tag{4.51}$$

and also that X is real

From Chapter II (2.31) we see that the bound states correspond to the energies when

$$\sum_{cc}^{-1} \mathcal{M} = 0 \tag{4.52}$$

From (4.39) we have

$$\sum_{cc}^{-1} = \frac{i}{\pi K \nu / 2} \times \left(e^{-2\pi i \nu} + \chi'_{cc} \right)^{-1} \left(e^{-2\pi i \nu} - \chi'_{cc} \right) \times \frac{1}{K \nu / 2}$$
(4.53)

The bound states occur when

$$e^{-2\pi i \gamma} = \chi_{pp}^{\prime} \left(= e^{2\pi i \alpha_p} \right)$$

i.e.

$$V = N - d_p \tag{4.54}$$

There is an infinite number of $M_{(p)}$ matrix satisfying (4.52) but in fact they are all linear dependant one of the other. One of them is:

$$\underset{\sim}{\mathcal{M}}_{(p)} = \nu^{3/2} K \underset{\sim}{\times}_{p}$$
(4.55)

 X_p is the column p extracted from X Using a similar method to Seaton (1966) we can find a normalised solution $G_{(p)}^{N}(r)$:

$$\left(G_{(p)}^{N+}(r) G_{(p)}^{N}(r) dr = 1 \right) \tag{4.56}$$

by taking

$$\frac{M}{G(p)} = K \times p$$

$$\frac{G^{N}}{G(p)} = -\Phi^{+} M(p)$$
(4.57)

(We neglect the slowly variation of χ_{pp} with energy. This approximation is valid for bound states having a large principal quantum number: for He⁺ + e⁻ n > 4)

4-10 Weak coupling between open and closed channels

When the interaction between open and closed channels is small the resonances are very narrow ($\beta_P << 4$). The results obtained in 4-9 are true as a first order.

In the case of He++e- the resonances are always harrow.

The X matrix is nearly real:

where $\overset{\times}{\underset{\sim}{\times}}^{\mathsf{R}}$ and $\overset{\delta}{\underset{\sim}{\times}}{\overset{\times}{\underset{\sim}{\times}}}$ are real matrices. We have

$$|\delta X| \ll 1$$
 (4.59)

Then it is easy to prove :

$$(X^{+}X)_{pp} = 1 + (2^{nd} \operatorname{order}: 3X3X)$$
 (4.60)

(diagonal element of X+X)

From (4.45) we deduce

$$|\chi'_{Pl}|^2 \simeq 1 - |\chi'_{PP}|^2$$
 (4.61)

and by consequence

$$|\chi'_{P_1}|^2 \sim 4\pi\beta_P$$
 (4.62)

Another important point is that we can develop our resonance on "normalised bound states".

From (4.57) applied to (4.32), (4.50) we have

$$G_{q_1}\left(\sum_{p_1} p_2\right) \sim i\sqrt{2\pi} v^{\frac{3}{2}} e^{-i\pi v} \sum_{p_2} \frac{G_{(p)q}^{N} \chi_{p_1}^{1}}{\chi_{pp}^{1} - e^{-2\pi i v}}$$
where $G_{(p)q}^{N}$ is the element q of the column matrix $G_{(p)}^{N}$

i.e.

$$G_{(p)q}^{N} \sim e^{-\frac{r}{\nu}} \left(\frac{2r}{\nu}\right)^{\nu} K_{q} X_{qp}^{R}$$
 (4.64)

Let's come back to F(J,r) (Chapter II (2.27)), from 4-8 we have :

$$F_{q_1}(J,r) \simeq i\sqrt{2\pi} y^{\frac{3}{2}} e^{-i\pi v} \sum_{p} \frac{F_{(p)q}^{N} \chi_{p_1}'}{\chi_{p_p}' - e^{-2\pi i v}}$$
 (4.65)

where

$$F_{(p)q}^{N} \sim e^{-\frac{r}{V}} \left(\frac{2r}{V}\right)^{V} \sum_{r} O_{qr} K_{r} X_{rp}^{R}$$
 (4.66)

The matrix Q being orthogonal and real $F_{(p)}^{N}$ is a "normalised bound state".

CHAPTER V

Electron capture probability by photo-emission

In this chapter we use the Bates and Damgaard Approximation (1949) in order to enable us to utilise the results of Chapter IV in the interaction Hamiltonian, $\mathcal{H}_{r,r}$, (E), of Chapter III.

Hence, having a mathematical formula for $\mathcal{F}_{rr}(E)$, we evaluate $\mathcal{Z}(E)$ by two different methods. The two final results obtained for the capture probability differ by a term that is analysed.

5-1 <u>Interaction Hamiltonian</u>

The radiation field Hamiltonian was defined in Chapter III (3.10), (3.13) as

$$\mathcal{H}_{\Gamma\Gamma}, (E) = \left(\frac{2\omega^3 a^3}{3\pi}\right)^{\frac{1}{2\pi}} \frac{(\Gamma E \parallel \mathcal{R} \parallel \Gamma')}{\sqrt{(2L+1)(2S+1)}}$$
(5.1)

We shall do the following approximations :

- 1) We ignore the direct recombination $15\,\text{kl}$ to $15\,\text{nl}\pm1$ that is small in the resonances region for He^++e^- .
- 2) We neglect the second channel contribution ($2sv^{\ell}$) since it gives only secondary effects .
- 3) The channels $2 \beta \nu \ell + 1$ and $2 \beta \nu \ell 1$ recombine into the series of bound states $4 s n' \ell + 1$ and $4 s n'' \ell 1$ respectively.

4) The strong interaction between 2p and 1s states of the core electron produces the photo-emission .

Due to the different core configurations (1s or 2p) the outer electron radial function $P_{\nu\ell+4}^{(2\nu)}$ with core 2p is different of any radial function $P_{n'\ell+4}^{(1s)}$ with core 1s (the same holds for $P_{\nu\ell-4}^{(2\nu)}$ and $P_{n''\ell+4}^{(4s)}$). But if we suppose the radial functions $P_{n'\ell+4}^{(1s)}$ constitute a complete basis for the $P_{\nu\ell+4}^{(2\nu)}$ we have :

$$P_{\nu \ell+1}^{(2p)} = \sum_{n'} O_{\nu \ell+1, n'\ell+1} P_{n'\ell+1}^{(1s)}$$
 (5.2)

with

$$O_{\nu\ell+4}, n'\ell+1 = \int_{0}^{\infty} P_{\nu\ell+1}^{(2p)} P_{n'\ell+1}^{(15)} dr$$
 (5.3)

and

$$\sum_{n'} |O_{n^2+1}, n'^2+1|^2 = 1$$
 (5.4)

In practice $\left| \mathcal{O}_{\ell,n\ell} \right|^{\lambda}$ decreases rapidly when the difference $\left| \mathcal{V} - n \right|^{\lambda}$ increases.

Using this former decomposition we can simplify the problem by dividing the process in two parts

A - Photo-emission produced by the core electron

B - The outer electron recombines with a probability depending on the overlap integral .

This approximation will be valid only when the overlap integral will not spread over too many n' and also when γ will not be too small so that $\omega \simeq 1.5$ a.u.

In this chapter we shall only consider the part A: Each channel recombines into one "bound state" $AS(v ! \pm i)_{2p}$. The Hamiltonian matrix defined in 3-3 contains 2 elements:

 \mathcal{H}_{11} corresponds to: $2 p (\nu l + 1)_{2p} \longrightarrow 45 (\nu l + 1)_{2p} + photow$ \mathcal{H}_{12} corresponds to: $2 p (\nu l - 1)_{2p} \longrightarrow 45 (\nu l - 1)_{2p} + photom$ Using Racah Algebra we obtain:

$$\mathcal{H}_{11} = \frac{1}{2\pi} A_r^{2} \left\{ F_{31}^{*} \left(\mathcal{J}, r \right) P_{V1+1}^{(2p)} dr \right\}$$

$$\mathcal{H}_{12} = \frac{1}{2\pi} A_r^{2} \left\{ F_{41}^{*} \left(\mathcal{J}, r \right) P_{V2-1}^{(2p)} dr \right\}$$
(5.6)

with

$$A_{r} = \frac{4}{3} \omega^{3} \alpha^{3} \frac{1}{3} \left| \int P_{2p}(r) r P_{1s}(r) dr \right|^{2} \approx 2.416 \times 10^{-7} \text{ a.u.} (5.7)$$

$$(P_{2p} \text{ and } P_{1s} \text{ are the He}^{+} \text{ radial 2p and 1s functions)}$$

5-2 Bates and Damgaard coulombic approximation

Before going further we shall justify the former decomposition using the Bates and Damgaard Approximation (1949) .

Let's consider the single channel radial equation. For $^{\prime}=0$ the bound channel solution $P_{\nu\ell}(r)$ satisfies the condition $P_{\nu\ell}(r)$. For $\gamma'<\gamma_o$, $P_{\nu\ell}(r)$ depends on the core considered and for $\gamma>\gamma_o$ the solution is known exactly for it is a coulombic function. Using a similar method to 4-9 we obtain for normalised bound solution:

$$P_{\nu e}(\gamma) = K(\nu, e) e^{-\frac{\nu}{\nu}} \left(\frac{2\nu}{\nu} \right)^{\nu} \left\{ 1 + \sum_{k=1}^{\infty} \frac{\alpha_k}{\nu^k} \right\}$$
 (5.8)

with

$$\alpha_{1} = \frac{\nu}{2} \left(\ell(\ell+1) - \nu(\nu-1) \right)$$

$$\alpha_{t} = \alpha_{t-1} \left\{ \frac{\nu}{2t} \left[\ell(\ell+1) - (\nu-t)(\nu-t+1) \right] \right\}$$
(5.9)

In (5.8) we have introduced the full development of the coulombic solution (Whittaker function).

When \lor increases the radial function extends less and less into the core and by consequence its value out of the core contributes more and more in the interaction integrals (i.e. overlap, dipole integrals).

Bates and Damgaard Approximation is to use, for any Υ , (5.8) with a suitable cut-off for the infinite sum. This cut-off has for purpose to suppress unwanted divergent terms in $\frac{1}{\gamma m}$. These terms are neglegible for Υ large. The choice of the cut-off can be varied but we prefered the one used by Burgess and Seaton (1960) for it looks more physical:

From (5.9) we see that for V=N the series is finite $a_t=0$ for $t \ge n-l$, for t < n-l a_t is negative. For V between N-l and N the series is negative for t < n-l and is positive for $t \ge n-l$. The smallest element in absolute value $|a_t|$ can be either for $t \ge n-l-1$ or $t \ge n-l$. Burgess and Seaton's choice for t corresponds to this minimal element. We tried many different choices and we found the results are not very sensitive of the choice but the best results are obtained for Burgess and Seaton's choice (Our criteria was based on the computed normalisation obtained for different t_0).

Bates and Damgaard Approximation is valid for the coupled equations if the coupling dissapears for $r > r_0$. For He⁺ we applied B. & D. Approximation to the bound channels solutions for G Since the equations (5.8) and (5.9) are also valid for G real or G can be generalised.

We require to compute

$$O_{\nu\lambda} \nu'\lambda' = \int_{0}^{\infty} P_{\nu\lambda}(r) P_{\nu'\lambda'}(r) dr \qquad (5.10)$$

On table 5*1,5*2,5*3 we give $(\lambda_{\lambda,\lambda'\lambda'})$ for some values useful for L=0 and L=1 partial waves. On table 5*1 we consider $(\lambda = \lambda')$ for λ' and (λ') varying from 12 to 13. Due to the symmetry in (λ') and (λ') we give only half of the table. We see that the results don't depend on (λ') . We did other computations for (λ') and it transpires from them that:

(1)

1=0	12.	12.2	12.4	12.6	12.8	13,
12.	1					
12.2	0.94	1			C455U - 7252	
12.4	0.76	0.94	1	~~~~	***	
12.6	0.50	0.76	0.94	1		
12.8	0.23	0.50	0.76	0.94	1	er all properly reduc
13.	ο.	013	0.50	0.76	0.94	1

(2)

l=1	12.	15.5	12.4	12.6	12.8	13.
12.	1	·	ĺ			
12.2	0.94	1.				
12.4	67.0	0.94	4.			
12.6	0.50	0.76	0.94	1.		
12.8	0.23	0.50	0.76	0.94	4.	
13.	0.	0.23	0.50	0.76	0.94	1.

(3)

l=1.6	12.	12.2	12.4	12.6	12.8	13.
12.	1.					- 14-00 Tab) (10-12-14-15)
12.2	0.93	0.99			. #F	
12.4	0.75	0.92	0.99		**************************************	min fining or main (1) (1) (1) (1)
12.6	0.50	0.75	0.92	0.99		OFFICE PROPERTY AND THE PARTY AND THE
12.8	0.22	0.50	0.75	0.92	0.99	
13.	-0.01	0.23	0.50	0.75	0.93	4.

(4)

l=2	12,	12.2	12.4	12.6	12.8	13.
12.	1,				entre de la companio	المناسب والمراجعة
12.2	0,94	1.01	The state of the s		general de Jenguis des Armelos - par 1 e	and the second
12.4	0.76	0.95	1.03			
12.6	0.51	0.76	0.94	1.00		-
12.8	0.23	0.51	0.76	0.94	1.00	-
13	0	0.23	0.50	0.76	0.94	1.

(5)

l =1.137	12.	12.2	12.4	12.6	12.8	13.
12.	0.98					
12.2	0.92	0.98				
12.4	0.74	0.92	0.99		·	
12.6	0.49	0.74	0.94	1.03		
12.8	0.23	0.50	0.75	0.93	0.98	- Bibliotal (Albinotal Special
13.	0	0.23	0.50	0.75	0.92	0.98

(6)

1 1 + 0.993 i	12.	12.2	12.4	15.6	12.8	13.
12.	1.02					
15.2	0.95	1.01				
12.4	0.77	0.95	1.01	#27 manusum, abad qu		Winds by pasts or by make b
12.6	0.51	97.0	0,95	1.02		
12.8	0.24	0,51	0.78	0,96	1,02	
13.	0	0.24	0.52	0.77	0.95	1.02

1	А	1
ı.	1	,

f=1 f=0	۱2.	12.2	12.4	12.6	12.8	13.
12.	1.	0.96	08.0	0.55	0.28	0.03
12.2	0.91	4.	0.96	0.80	0.22	0.28
12.4	0.71	0.91	1.	0.96	0.80	0.55
12.6	0.46	0.72	0.91	1.	0.96	0.79
12.8	0.19	0.46	0.ገጷ	0.91	1.	0.96
13.	-0.02	0.20	0.46	0.72	10.0	1.

(2)

€=1 €=0	8,	8.2	8.4	8.6	8.8	9.0
8.	0.99	0.96	180	0.57	0.29	0.05
8.2	0.89	0.99	0.96	08.0	72.0	0.30
8.4	0,69	0.89	0.99	0,95	18,0	72.0
8.8	0.44	0.69	0.89	0.99	98.0	18.0
8.8	81.0	0.44	0T0	0.90	0.99	0.96
9.	-0.03	0.18	0.44	07.0	0.90	0.99

(3)

			, ,,,,			
P=2	12.	12.2	12.4	12.6	12.8	13.
12.	0.99	0.97	0,83	0,60	0.38	90.0
12.2	0.88	0.99	0.97	68.0	0.60	0.32
12.4	0.67	18.0	0.98	0.97	28.0	0.60
12.6	0.41	0.67	88.0	0,99	0.97	0.83
12.8	0.16	0.41	0.67	88.0	0.99	0.97
13.	-0.04	0.16	0.42	0.67	88.0	0.99

(4)

l=2 l=0	12.	12.2	12.4	12.6	12.8	13.
			0.86			
12.2	0.84	0.97	0.98	0.86	0.64	0.37
12.4	0.63	0.85	0.97	0.98	0.86	0.64
12.6	0.37	0.63	0,85	0.97	0.98	0.86
12.8	0.13	0.37	69.0	0.85	82.0	0.98
13.	-0.06	0.13	0.38	0.63	0,85	0.98

(5)

				,		
120 120	12.	na	12.4	12.6	12.8	13.
	82,0	0.96	0.83	0.59	0.32	0.06
12.2	0.87	8P.0	0,96	0.82	0.59	0.32
12.4	0.67	0.87	0.98	0.96	0.82	0.59
12.6	0.41	0.67	0.87	0.98	0.96	0.82
13.8	0.16	0.41	0.67	88,0	89.0	0.96
13.	-0.04	0.16	0.41	0.67	88.0	89.0

(6)

, ,								
P=2.2	12.	12.2	12.4	12.6	12.8	13.		
		0.97	0.87	0.66	0.39	0.12		
12.2	0.82	0.95	0,97	78.0	0.66	0.39		
12.4	0,60	0.82	0,96	0.97	0.86	0.65		
12.6	0.35	0.60	0.85	0.96	0.97	0.86		
12.8	0.11	0,35	0.61	0.82	0,96	0.97		
13.	-0.06	0.12	0,35	13.0	0.83	0.96		

1	1	١
(٠,)

P=1.6 P=1	12.	12.2	12.4	12.6	12,8	13,	
12.	0.99	0.95	0.79	0.55	0.28	0.03	
12.2	0.90	0.99	0.95	0.79	0.55	0.28	
12.4	0.70	0.90	0.99	0.95	0.79	0.55	
12.6	0,45	0.71	0.90	0.99	0.95	0.79	
12,8	0.19	0.46	11.0	<i>0.</i> 90	0.99	0.95	
13,	-0.02	0.19	0.46	11:0	0.90	0.99	

(2)

€=2.23 €=1	12.	12.2	12.4	12.6	12.8	13.
12.	0.97	0.97	0.84	0.62	0.34	80.0
12.2	28,0	0.97	0.96	0.84	0.61	0.34
12.4	0,64	0.85	0.97	0,96	0.84	0.61
12.6	0.39	0.64	0.85	0.97	0.97	0.84
12.8	0.14	0.39	0.64	28.0	0.97	0.97
13.	-0.05	0.14	0.39	0.65	98.0	0.97

(3)

P=2237 12. 12.2 12.4 12.6 12.8 13.							
રાજ	12.	12.2	12.4	12.6	12.8	13.	
12.	0.99	0.94	0.77	0,52	0.25	0.01	
12.2	16.0	0.49	0.95	0.79	62,0	0.26	
12.4	0.12	10.0	1.	0.97	0.78	0.53	
12.6	0.47	0.73	0.92	1.	0.94	0.77	
12.8	0.21	0.48	0.73	0.92	0.99	0.94	
13.	10.01	0.21	0.48	0.73	0.91	0.99	

(4)

(=0)	12.	12.2	12.4	12.6	12.8	13.
		0.93				
12,2	0.96	1.	0,93	0.74	0.49	0.22
12.4	0.78	0,96	4,	0.93	0.74	0.49
12.6	0.53	0.78	0.96	1.	0.93	0.74
12.8	0.26	62.0	0.78	0.96	1.	0.93
13.	0.01	0.26	0.53	85.0	0.95	1.

(5)

())							
ξ ₂ -1/2	+i0.999 12.	12.2	12.4	12.6	12.8	13.	
12.	٨.	0.90	0.70	0,44	81.0	-0.03	
12.2	0.97	1.	0,90	0.70	0,44	0/18	
12.4	0.82	0.97	4.	0.90	0.70	0.44	
12.6	0.58	0,82	0.97	1.	18.0	סרט	
12.8	0.30	82.0	0.82	0.97	1.	0.91	
13.	0.05	0.30	82,0	0.82	0.97	1.	

(6)

\^								
12-12 1-2	i 0.999 12.	12.2	12.4	12.6	12.8	13.		
12.	0.97	0,84	19,0	0,36	0.12	-0.06		
12.2	0.99	76.0	0,84	0,62	0,36	0.12		
12.4	0′88	0.99	89.0	0.84	0.62	0.36		
12.6	0.67	88.0	0.99	0.98	0.84	0.62		
12.8	0.40	0,67	88,0	0.99	0,98	0.84		
13.	0,12	0.39	0.67	88.0	0.99	0.98		

$$\theta_{\nu\lambda\nu'\lambda} = \frac{\sin\pi(\nu-\nu')}{\pi(\nu-\nu')}$$
 (5.11)

(5.11) agrees with (5.4) since it can be proved (Cartan (1963)) that:

$$\sum_{N=-\infty}^{+\infty} \frac{1}{(x-n)^2} = \left(\frac{\pi}{\sin \pi x}\right)^2 \tag{5.12}$$

On table 5*2 and 5*3 we give results for $\lambda \neq \lambda'$ which are slightly asymmetrical but if we compare 5*2 (1) and (2) that correspond to $\lambda = 0$ and $\lambda = 1$ for λ' , λ' between 12 and 13 and λ' , λ' between 8 and 9 we see that the asymmetry dissapears when λ' increases. For λ' large we can deduce at the first order that

$$(5.13)$$

$$\frac{0}{\pi(\nu-\nu')}$$

Applying (5.13) in (5.6) and using (4.65) we obtain:

$$\mathcal{H}_{11} = -\frac{i}{\sqrt{2\pi}} A_{r}^{2} \nu^{32} e^{i\pi\nu} \sum_{t} O_{3t} \sum_{p} \frac{X_{tp}^{*} \chi_{p}^{**}}{\chi_{tp}^{**} - e^{2\pi i\nu}}$$

$$\mathcal{H}_{12} = -\frac{i}{\sqrt{2\pi}} A_{r}^{2} \nu^{32} e^{i\pi\nu} \sum_{t} O_{4t} \sum_{p} \frac{X_{tp}^{**} \chi_{p}^{**}}{\chi_{tp}^{**} - e^{2\pi i\nu}}$$

$$\mathcal{H}_{12} = -\frac{i}{\sqrt{2\pi}} A_{r}^{2} \nu^{32} e^{i\pi\nu} \sum_{t} O_{4t} \sum_{p} \frac{X_{tp}^{**} \chi_{p}^{**}}{\chi_{tp}^{**} - e^{2\pi i\nu}}$$

$$(5.14)$$

For calculating the $S^{(p,e)}$ matrix we need to know the Z matrix. In the next parts we shall give two different methods for evaluating Z (and $S^{(p,e)}$).

5-3 Energy representation

Due to an existing phase difference we shall consider only the case where the resonances do not overlap .

The resonances being very narrow we can do an energy expansion of $(\chi'_{pp} - e^{-2\pi i \nu})$ around each resonance center $\forall_{np} = n - d_p$.

$$\chi'_{pp} - e^{-2\pi i \nu} = e^{2\pi i \alpha_p} \left(e^{-2\pi \beta_p} - e^{-2\pi i \delta_{\nu}} \right)$$
 (5.15)

where

$$\delta \nu = \nu - \nu_{np} \simeq \nu_{np}^{3} \left(E - E_{np} \right)$$

$$E_{np} = E_{2p}^{+} - \frac{1}{2\nu_{nb}^{2}}$$
(5.16)

 E_{2p}^{+} is the excitation energy from 1s to 2p , $E_{2p}^{+} = 1.5$ a.u. We shall also define

$$\Gamma_{np} = \frac{2\beta p}{V_{np}^3}$$
 (5.17)

At the first order (5.15) is

$$\chi_{pp}^{\prime} - e^{-2\pi i \nu} \simeq 2\pi i \gamma_{np}^{3} e^{2\pi i \alpha p} \left(E - E_{np} + i \frac{\Gamma_{np}}{2}\right)$$
 (5.18)

The resonances don't overlap and the coupling between open and closed channels being weak we can deduce near $V = V_{NP}$

$$(\mathcal{K}^{+}\mathcal{H})_{ij} = \frac{1}{4\pi^{2}} A_{r} \sum_{ts} O_{i't} O_{j's} \frac{X_{tp} X_{sp}^{*} \Gamma_{hp}}{(E-E_{np})^{2} + \frac{1}{4}\Gamma_{np}^{2}}$$
(5.19)

t' and }' are defined as follow:

$$i=1 \iff i'=3$$

$$i=2 \iff i'=4$$
the same for j and j'

From the Residue theorem we have :

$$\frac{Z(E) = \frac{i}{2} A_{p} \sum_{ts} O_{i't} O_{j's} \frac{X_{tp} X_{sp}^{*}}{(E-E_{np}) + \frac{i}{2} \Gamma_{np}}$$
we define the column matrix (2,1) B_{p} by

~ 1

$$B_{p} = A_{r}^{2} O' X_{p}$$
 (5.21)

where

$$O' = \begin{pmatrix} O_{32} & O_{33} & O_{34} \\ O_{42} & O_{43} & O_{44} \end{pmatrix}$$
 (5.22)

 $\underset{\sim}{\times}_{\mathsf{P}}$ is the column number p of $\underset{\sim}{\times}$

$$Z(E) = \frac{1}{2} \frac{1}{E - E_{np} + \frac{1}{2} \Gamma_{np}} B_{p} B_{p}^{+}$$
 (5.23)

Then

$$S^{(p,e)} = e^{i\varphi} \left(E - E_{np} + \frac{i}{2} \Gamma_{np} + \frac{i}{2} \frac{B_p}{p} \frac{B_p}{p} \right) = \frac{1}{2} \Gamma_{np} (5.24)$$

(φ is a phase depending on $arg(\chi_{pp}^{\prime})$ and $arg(\chi_{pp}^{\prime})$)

The right hand side of (5.24) contains a matrix (2,2) to inverse. The formulation is simplify by using the following formula:

$$(1+BAB^{+})^{-1}B=B(1+AB^{+}B)^{-1}$$
 (5.25)

very easy to prove since

$$(1+BAB^{+})^{-1}(1+BAB^{+})B=B$$
 (5.26)

$$(1 + BAB^{+})^{-1}B(1 + AB^{+}B) = B$$
 (5.27)

This gives (5.25) by multiplying (5.27) by $(1+AB^{\dagger}B)^{-1}$. We have

 $\mathcal{B}_{\mathbf{p}}^{\mathsf{T}} \mathcal{B}_{\mathbf{p}}$ is a single element matrix .

$$\mathcal{B}_{p}^{+}\mathcal{B}_{p} = A_{r} \left[\left(O_{32} X_{1p} + O_{33} X_{2p} + O_{34} X_{3p} \right)^{2} + \left(O_{42} X_{1p} + O_{43} X_{2p} + O_{44} X_{3p} \right)^{2} \right] (5.29)$$

The total recombination probability is

$$\frac{3(P,e)+5(Pe)}{\sum_{k=0}^{\infty} \frac{B_{k}^{+}B_{k}^{+}P_{k}^{+}P_{k}^{+}}{|E-E_{n}|+\frac{1}{2}P_{n}|+\frac{1}{2}B_{k}^{+}B_{k}^{+}|^{2}}}$$
(5.30)

$$P(np) = \int dE S^{(p,e)} + S^{(p,e)}$$

$$= \frac{2\pi B_p B_p \Gamma_{np}}{\Gamma_{np} + B_p B_p}$$
(5.31)

The formula (5.31) is very similar to the one obtained by Bates and Dalgarno (1962) .

5-4 Principal quantum number representation

In 5-3 we developed \mathcal{H}_1 ; in function of the energy now we develop $\frac{1}{E-\Omega-i\varepsilon}$, in formula (3.30), in function of \vee . The integral from $-\infty$ to $+\infty$, for E, is from \vee , to \vee_0+1 .

Using the same method introduced in 5-3 we expand E around $\Omega + i \epsilon$

$$E-\Omega-ie \simeq \frac{1}{v_{\Lambda}^{3}} \left(v-v_{\Lambda}-i\xi\right) \qquad (5.32)$$

with

$$\Omega = E_{2p}^{+} - \frac{1}{2\nu_{\Omega}^{2}}, E - \Omega = \frac{\nu - \nu_{\Omega}}{\nu_{\Lambda}^{2}}$$
 (5.33)

and

$$ie = \frac{i\xi}{v_0^3}$$
 (5.34)

with $\xi > 0$ (since $\epsilon > 0$)

Let's define

$$\chi_{\Omega\xi} = e^{2\pi i (\nu_{\Omega} + i \xi)}$$
 (5.35)

Then from (5.32) we obtain

$$\frac{1}{E-\Omega-i\epsilon} \sim \frac{2\pi i \sqrt{3} \chi_{\Omega\xi}}{e^{2\pi i \nu} - \chi_{\Omega\xi}}$$
 (5.36)

We can check this formula knowing that the integral of the left hand side of (5.36) is

$$\lim_{E \to 0} \left(\frac{dE}{E - \Omega - iE} = i\pi \right)$$
 (5.37)

for the right hand side it gives

$$\int_{V_0}^{V_0+1} \frac{d\nu}{\nu^3} \frac{2\pi i \nu^3 \chi_{\Omega\xi}}{e^{2\pi i \nu} - \chi_{\Omega\xi}} = \begin{cases} \frac{dz}{z} \chi_{\Omega\xi} \\ \frac{dz}{z} (z - \chi_{\Omega\xi}) \end{cases} = 0$$
 (5.38)

Therefore (5.36) is not correct.

We shall improve (5.36) using the approximation $\chi_{n\xi} \sim e^{2\pi i v}$ when $v \simeq v_n$ and we can take :

$$\frac{1}{E-\Omega-i\epsilon} \sim \frac{\pi i \, V^3 \left(e^{2\pi i V} + \chi_{\Omega\xi}\right)}{e^{2\pi i V} - \chi_{\Omega\xi}}$$
 (5.39)

This formula agrees with (5.37). Also the right hand side is antisymmetrical in $e^{2\pi i v}$ and $\chi_{n\xi}$ as the left hand side in E and $\Omega + i \epsilon$.

We write $\mathcal{X}^{\dagger}(E)$ using the matrix notation

$$\mathcal{H}^{+}(E) = \frac{i}{\sqrt{2\pi}} \sqrt{\frac{8}{2\pi}} e^{-i\pi\nu} \underbrace{B} \left(\chi_{c_{1}}^{1} - e^{-2\pi i\nu} \right)^{-1} \chi_{c_{0}}^{2}$$
 (5.40)

B is given by

$$B = A_{t}^{\chi_{2}} Q^{\prime} \chi \qquad (5.41)$$

If we compare (5.41) and (5.21) we see that $\underset{\sim}{\mathbb{B}}_{p}$ is the column number p of $\underset{\sim}{\mathbb{B}}$. $\underset{\sim}{\mathbb{B}}$ is a (2.3)-matrix.

Using (5.39) we have

$$Z(E) = \pi \nu^{3} B(e^{-2\pi i \nu} - \chi_{cc}^{2})^{-1}(e^{-2\pi i \nu} + \chi_{cc}^{2}) B^{T}$$
 (5.42)

Applying (4.45) to (5.42) we reobtain (3.37) i.e.:

This is another check that (5.39) is correct .

The next stage is to reduce :

$$S^{(p,e)} = \sqrt{2\pi} e^{-i\pi v} v^{3/2} \left(1 + \frac{\pi}{2} v^{3} B(e^{-2\pi i v} - \chi'_{cc})^{-1} (e^{-2\pi i v} + \chi'_{cc}) B^{T}\right) B(\chi'_{cc} - e^{-2\pi i v})^{-1} \chi'_{co}$$
(5.43)

by incorporating (5.25) and defining

$$\Delta_{cc} = \frac{\pi}{2} \gamma^3 B^T B \qquad (5.44)$$

We have

where

$$\Theta_{cc} = \left(1 + \Delta_{cc}\right)^{-1} \chi_{cc}' \left(1 - \Delta_{cc}\right) \quad (5.46)$$

In general Θ_{cc} has not the same eigenvalues as X_{cc} . The matrix A_{cc} produces a shift in the positions of the resonances.

For comparing this new result to the former one (5.28 we shall do the same hypothesis : i.e. the resonances don't overlap.

For Y around Vnp:

$$\mathcal{H}^{+}\mathcal{H} = \frac{1}{4\pi^{2}} \mathcal{B}_{p} \mathcal{B}_{p}^{+} \frac{1\chi_{p}^{2}}{(\chi_{pp}^{\prime *} - e^{2\pi i \nu})(\chi_{pp}^{\prime} - e^{-2\pi i \nu})}$$
 (5.47)

Then

$$Z(E) = \frac{\pi}{2} v^{3} B_{p} B_{p}^{\dagger} \frac{(e^{-2\pi i v} + \chi'_{pp})}{(e^{-2\pi i v} - \chi'_{pp})}$$
 (5.48)

and

$$S^{(p,e)} = \sqrt{2\pi} e^{-i\pi\nu} \sqrt{2} B_{p} \left(e^{-2\pi i\nu} \theta_{p}^{\prime}\right)^{-1} \left(1 + \Delta_{p}^{\prime}\right)^{-1} \chi_{p}^{\prime}$$
 (5.49)

where

$$\Delta'_{p} = \frac{\pi}{2} \nu^{3} B_{p}^{\dagger} B_{p} \qquad (5.50)$$

 Δ'_{p} is a single element matrix as Θ'_{p} :

$$\Theta_{p}' = \left(1 + \Delta_{p}'\right)^{-1} \chi_{pp}' \left(1 - \Delta_{p}'\right)$$
 (5.51)

Now using (4.61) we obtain

$$P(h|p) = \frac{2\pi |\chi_{pl}|^2 B_p^{\dagger} B_p}{2\pi \nu^3 B_p^{\dagger} B_p + |\chi_{pl}|^2 (1 - \pi \nu^3 B_p^{\dagger} B_p)^2}$$
 (5.52)

Inserting (4.62) and (5.17) the final result is deduced

$$P(np) = \frac{2\pi B_{p}^{\dagger}B_{p}}{B_{p}^{\dagger}B_{p} + \Gamma_{np} (1 - \frac{\pi}{2}\nu^{3}B_{p}^{\dagger}B_{p})^{2}}$$
 (5.53)

If we compare (5.53) and (5.31) we see that they are identical except for the term $-\frac{\pi}{3} v^3 B_p^{\dagger} B_p$.

5-5 Commentary on the formulae obtained

The problem is to choose between (5.31) and (5.53).

If we consider the case where the resonances are flat $(\chi_{p_1}^2)^2 = 1$ and do an average integration over γ we obtain from (5.31):

$$\langle |S^{(p,e)} + S^{(p,e)}| \rangle^{(1)} = \frac{2\pi \nu^3 B_p B_p}{1 + 2\pi \nu^3 B_p B_p}$$
 (5.54)

Now let's do the same for (5.53)

$$\langle |S^{(p,e)} + S^{(p,e)}| \rangle^{(2)} = \frac{2\pi v^3 B_p^{\dagger} B_p}{\left(1 + \frac{\pi}{2} v^3 B_p^{\dagger} B_p\right)^2}$$
 (5.55)

When the resonances are flat there is no damping due to the resonances and we can compare the formulae (5.54) and (5.55) to the case where there is no resonance (Davies and Seaton formula (6,16))

$$S^{(p,e)} + S^{(p,e)} = \frac{2\pi \Gamma(E)}{\left(1 + \frac{\pi}{2} \Gamma(E)\right)^2}$$
 (5.56)

where

$$\Gamma(E) = 2\pi \Re^+(E) \Re(E) \qquad (5.57)$$

We can therefore deduce that (5.53) is a better approximation than (5.31).

For dielectronic recombination, the effect of using (5.53) instead of (5.31) appears for V large. For He⁺ + e⁻ this effect is negligible since it appears for $V^3 \ge 10^7$ and at this point the dielectronic recombination is already small. But for more ionised system it can decrease considerably the dielectronic recombination rate.

CHAPTER VI

Calculation of the complex quantum defect for He+ e-

6-1 <u>Introduction</u>

In chapter V the electron capture probability was expressed in function of two quantities Γ_{np} and $\stackrel{\triangleright}{\nearrow}_{p}$ which were themselves function of the complex quantum defect $\stackrel{\triangleright}{\lor}_{p}$ and of the diagonalisation matrices $\stackrel{\triangleright}{\bigcirc}$ and $\stackrel{\triangleright}{\searrow}$. All these last quantities are tabulated in this chapter. They are obtained by a computation method deduced from chapter IV theory.

In this chapter we also check the validity of the method used by comparing the complex quantum defect to the values obtained by solving directly the coupled equations, employing the method developed by Norcross and Seaton (1970). For completing the test we also built a programme using Bely's method (1965 a,b and 1966).

We shall begin by giving some commentaries on this last test.

6-2 Bely's programme

Before developping chapter IV theory we thought possible to use Norcross and Seaton' method (1970) so as to extrapolate

the complex quantum defect . But as will be shown in 6-4 (Figures 6*1 to 6*5) with this approximation any extrapolation of the complex quantum defect from above the threshold is unreliable . But on figures 6*1 to 6*5 an interesting feature appears: under the threshold the complex quantum defect is slowly varying with energy and seems to converge to the value obtained at the threshold . However we can't have any certainty since just under the threshold an unknown gap can't be reached by solving numerically the coupled equations .

We built Bely's programme (1965 a,b and 1966) to check, for He⁺ + e⁻, that the failure of Norcross and Seaton's method was really due to the difference of approximation. The direct comparaison of the asymptotic forms obtained by solving the coupled equations and the corresponding results deduced by extrapolation from above the threshold using Bely's programme was very good, showing a great improvement.

First, it didn't give the complex quantum defect.

Second, it didn't fill the unknown gap due to some divergent functions used by the method.

Third, it was numerically very unstable depending on the computer word length. This point was already mentionned by Bely (1966): "The calculations are very sensitive to numerical

However Bely's programme didn't solve our problem :

For going out of this cul de sac we tried to improve Bely's method so as to suppress the divergent functions and the causes of the inaccuracies. We found that for some λ the analytic functions β_1 , β_2 (and β_6 , β_7 in Bely's notations)

inaccuracies " .

were not numerically independent when the word length was small . We defined new analytic functions giving less trouble . At the place of $\frac{1}{2}$ we took

$$3'_{2} = \frac{1}{2\pi} \left\{ A(K,e) 3_{1} + 3_{2} \right\} / (3-e)$$

that converged to β_4 for λ tending to an integer. These new functions improved the stability but increased the complexity of the programme already difficult to utilise. Also the number of possible new definitions being infinite the physical validity of any choice became problematical. We had to find a criteria.

Following Eissner et al. (1969) Seaton (1969 a) and Norcross and Seaton (1970) we decided to abandon the analytic functions for the slowly varying functions. For $\lambda = \ell$ the regular and irregular Coulomb function are slowly varying with energy. They are also in phase quadrature and they have physical properties in the Coulomb-Born Approximation. For $\lambda \neq \ell$ and ϵ are the natural prolongation of the Coulomb function.

Bely's programme has been kept for comparaison .

6-3 Chapter IV theory programme

For avoiding to compute many times the same quantities we built two programmes (for IBM 360) .

Programme I

INPUT: all the total angular momenta L corresponding to the partial waves considered (in practice: L=0, ----, 10)

 $\underline{\text{MAIN}}$: reads the input and calls two subroutines AMAT , EIGEN . It prints and punchs the α and $\overset{\circ}{\text{O}}$ (see (4.6))

AMAT: from the target radial functions and the angular momenta \bot it calculates $\overset{\wedge}{\nearrow}$ defined by (4.5). For He⁺ + e⁻ we have

$$A = \begin{pmatrix} \ell_{1}(\ell_{1}+i) & 0 & 0 & 0 \\ 0 & \ell_{3}(\ell_{2}+i) & \frac{3\sqrt{\ell_{1}+i}}{\sqrt{2\ell_{2}+i}} & \frac{-3\sqrt{\ell_{2}}}{\sqrt{2\ell_{3}+i}} \\ 0 & \frac{3\sqrt{\ell_{1}+i}}{\sqrt{2\ell_{2}+i}} & (\ell_{1}+i)(\ell_{3}+2) & 0 \\ 0 & \frac{-3\sqrt{\ell_{2}}}{\sqrt{2\ell_{2}+i}} & 0 & \ell_{3}(\ell_{3}-i) \end{pmatrix}$$

$$(6.1)$$

EIGEN: it calculates the diagonal matrix α and the orthogonal matrix O ($\alpha_{n}=A_{n}$ and $O_{14}=O$ excepted $O_{n}=1$).

EIGEN is derived from CEIGEN (see Programme II).

Programme II

INPUT:

a: L, a, O

b: number of energies from which the extrapolation is done: N1, and number of energies to which the extrapolated results will be calculated: N2.

c: energies corresponding to N1 and N2 : E1(i), E2(i)

d: \mathbb{R} matrices obtained from the coupled equations programme and corresponding to : L , E1(i)

e : degree of the polymonial fitting +1:N . If the value is zero the programm takes N=N1 .

MAIN: the inputs are read and the four main subroutine are called: RTORP, ANALYT, RPTOR, RESON.

RTORP: it does the transformation from R to R . The

elements required for this transformation are computed in PHI. ANALYT: knowing the \mathfrak{J} -matrices corresponding to L, E1(i) it obtains the coefficient matrices of the polymonial expansion of degree N-1.

$$9 = 9_1 + 9_2 E + --- 9_N E^{N-1}$$
 (6.2)

Depending on ${\cal N}$ the subroutine uses different methods : For ${\cal N}_{=}\,{\sf N1}$ it uses the direct fitting obtained by inversing the matrix

$$D = \begin{pmatrix} 1 & E_1 & E_2^2 & --- & E_1^{N_1 - 1} \\ 1 & E_2 & E_2^2 & --- & E_2^{N_1 - 1} \\ --- & --- & --- & E_{N_1}^{N_1 - 1} \end{pmatrix}$$

$$1 = \begin{bmatrix} 1 & E_1 & E_2^2 & --- & E_1^{N_1 - 1} \\ --- & --- & E_1^{N_1 - 1} \\ 1 & E_{N_1} & E_{N_2}^{N_1} & E_{N_1}^{N_1 - 1} \end{bmatrix}$$

$$(6.3)$$

For N < N1 it uses the least square polymonial fitting $(1 \le N < N1)$. The problem reduces to a matrix inversion as in the first case . For N_2N1 the second method is identical to the first . The subroutine calls INV .

RPTOR: from the matrices $\mathcal{G}_1, \ldots, \mathcal{G}_N$ it rebuilts the \mathcal{G} -matrix for the required energy. Then by calling PHI it transforms \mathcal{G} into \mathcal{R} or \mathcal{R} (see (2.26)) it prints the matrix obtained.

The complex quantum defect ψ_p : \mathcal{N}_{pp} and the elements Ω : are tabulated on table 6*5 to 6*25.

PHI: knowing α and E it deduces λ ($\alpha_{ii} = \lambda_i(\lambda_i + i)$) and the

E; for each, channel. Then for $\mathbb{C}_{>0}$ from (2.17) (4.23) (4.24) and (4.27) it obtains the two phases differences that are necessary for doing the transformation from \mathbb{R} to \mathbb{R} (and viceversa) (see Appendix 3). For $\mathbb{C}_{<0}$ from (4.20) it obtains the expansion coefficients on the convergent and divergent asymptotic functions (by eliminating the divergent part \mathbb{R} is deduced in RPTOR). PHI calls GAMC.

<u>GAMC</u>: it gives the modulus and argument of $\Gamma(\xi)$ when ξ is complex. The method used is classical: for $\Re e(\xi) < 0$ it uses the canonical relation $\Gamma(\xi): \xi \Gamma(\xi-1)$ so that to express $\Gamma(\xi)$ in function of $\Gamma(\xi+n)$ where $\Re e(\xi+n) \ge 0$. Then $\Gamma(\xi+n)$ is evaluated by the Stirling formula:

$$\Gamma(x) = e^{-x} \times^{x-\frac{1}{2}} (2\pi)^{\frac{1}{2}} \left[1 + \frac{1}{12x} + \frac{1}{288x^2} - \frac{139}{51840x^3} - \frac{571}{2488320x^4} \right]$$
 (6.4)

We checked GAMC by reprducing all the tables given by Abramowitz and Stegun (1965). The agreement is over all the tabulated digits We also checked many other cases using for comparaison the formula

$$\Gamma(x) \Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$$
 (6.5)

The agreement was very good .

<u>CEIGEN</u>: This programme was made by Seaton (1969 b). It is a programme of diagonalisation of symmetric complex matrix.

INV: classical programme of matrix inversion.

6-4 Comparaison with Norcross and Seaton's method

Norcross and Seaton's method (1970) contains the hypothesis (see formula (4.3))

$$V_{ik}(r) = 0 \qquad \text{for} \quad r \geqslant r_0 \qquad (6.6)$$

Hence there is no need of a first diagonalisation ($\lozenge \le 1$) The diagonal elements \lozenge_{\lozenge} are

$$\Delta_i = \ell_i \tag{6.7}$$

By following the same method as in chapter IV they obtain the χ matrix and the $\chi'_{\rm cc}$ matrix. The complex quantum defect is defined similarly.

Under the threshold it is possible to fit the \Im_{14} element to the profile formula (see (4.43))

$$S_{11} = \alpha + \sum_{r} \frac{\beta_{r}}{e^{-2\pi i \nu} - \chi_{rr}^{2}}$$
 (6.8)

from which is deduced yr: X'rr = e 2mipr

Norcross and Seaton used a different fitting :

$$S_{11} = e^{2iS_1}$$

$$S_1 = a + \sum_{r} tan^{-1} \left(\frac{\frac{1}{2} \Gamma_r}{E_{r} - E} \right)$$
(6.9)

The profile parameters were estimated by considering few energies over the resonances where the coupled equations were solved.

From E_r they deduced d_r :

$$E_r = E_{2p}^+ - \frac{1}{2(n-d_r)^2}$$
 (6.10)

and the complex quantum defect. Up = dp+i Bp:

$$(n-d_{r})^{2} = \left[(n-d_{r})^{2} + \beta_{r}^{2} \right]^{2} / \left[(n-d_{r})^{2} - \beta_{r}^{2} \right]^{2}$$

$$\Gamma_{r} = 2 (n-d_{r})\beta_{r} / \left[(n-d_{r})^{2} + \beta_{r}^{2} \right]^{2}$$
(6.11)

We compared the two former methods. The results obtained were practically identical.

On figures 6*1 to 6*5 we plot the results obtained . Under the threshold the fitting method was used . Above the threshold $(++++, \circ \circ \circ \circ)$ were obtained using Norcross and Seaton's method and (---, ---) using chapter TV theory .

The comparaison of the results shows that an extrapolation from Norcross and Seaton's results is not good but from chapter IV theory it is very satisfactory except for the imginary part figure of the complex quantum defect for the last table. This imaginary part being very small it is possible that some numerical inaccuracies have produced the strange curve.

	-								
'	4 V	ヹ		دد	ر ک		d!		
	Erskais.	Rah	imag.	real	ımag	J. 4.	D 18	G G	Dze
<u>.</u> رۍ	3.00	- 0.399	0,322 -3	-0.331	0.137 -1	0.0867	516.0	\$16.0	0.0867
¹ Z,	3.01	- 0.404	0.600 -4	-0.325	0,140 - 4	0.139	0,862	0.862	0.139
፟፟ጟ	3.03	0.408	0.212-4	-0.320	0.142 -1	0.161	0.839	0.839	0,161
4	3.05	-0.412	0.533 -5	20.315	0.143 -1	0.178	0.822	0.812	0.178
Ş	3.10	-0.422	0.154-5	-0.301	0.147-1	0.209	10 F. O	161.0	0.209
ŵ	3.24	-0.436	0.281-4	-0.256	0.152-1	0.246	S5L:0	\$21.0	0.246
Ø	42.8	10,437	4-873.0	-0.256	1-251.0	0.246	450.0	0.754	0.146

Complex quantum defects and D. matrix obtained wing R matrice The S remets were obtained maing staton's pagramme (1970) from Burke of al, (1964), B, and D, Norceuss (1970), N.

	-1						programing a register report below	· · · · · · · · · · · · · · · · · · ·	
	organisation for the contract of the contract	A 22	0,478	0.482	0.495	015.0	0.553	0.737	0.736
		D 21	0.522	0.518	0.505	0.490	0.447	0,263	0.264
	7	Λ_{12}	0.522	0.518	505,0	0,490	C 44.0	0.263	496.0
		D 11	0.478	0.482	0,495	0,510	\$55.0	787.0	0.736
0	2	imag.	0.667 -4	0.682 -4	0.713-4	0743-4	0.809-4	0.867-4	0,863-4
	42	Ral	-0.195	-0.188	-0.185	-0.182	-0.175	-0.152	-0.152
		imag.	0.750 -5	0.734 -5	0.836 -5	0.957-5	0.143-4	0.407-4	0.396-4
	۲ ₄	real	65700	0.0169	0.0103	0.0040	8010.0-	-0.0394	7860.0-
بر	\mathcal{O}	ENtraile	3.00	3.01	3.03	3.05	3.10	3.24	3.24
•		al-algebraiche des angles accuse	S	' Z,	'፟፟፟፟፟	マ	Ş	3	മ

			de contrata de la co		-	Applied of the Proposition in Contract			
	ر2 ام	imag	0,311-4	0.329-4	0.320-4	0.308-4	4-812.0	4-141.0	0.137-4
		Ral	-0.276	-0.172	-0.271	-0.270	-0.267	-0.257	TS7.0-
8	رد ه	imag.	0.842 -6	0.113-5	0.127-5	0.146-5	5-561.0	0.260-5	0.243-5
∞ * 9	رد	real	-0.324	-0.328	-0.328	-0.329	-0.332	-0.335	-0,335
	25	Imag.	0.421 -2	0.424-2	0.434-2	0.445-2	0.472-2 -0.332	0.531-2 -0.335	2-1250
	رد	Man	0.136	0.133	0.128	0, 124	0.116	0.102	101.0
~	<u>Д</u> ,	Enecgies	ે કે.૦૦	3.01	3.03	3.05	3,10	3.24	3.24
•			702	4	4	12	ひ	₹\$.	Ω

	-32 D 33	00 0.297	378 0.318	905.0	361 0.300	382 0,275	9.8.0
	31 1 32	5 0.1100	4 0.0878	9160.0	5 0.0961	7 0. 1082	0,136
	3 D 31	0.593	0.594	0,600	0,605	0.617	0.650
	D-23	90800.0	0.0234	0,0213	6810.0	0,0131	9,0036
d:	7	0.789	4۲۲.0	777.0	0,780	0.787	0.800
	D 21	0.202	0.203	0.202	.0.201	0.200	0.200
	7 73	0,694	0.659	0.670	0,682	0.712	0.783
	D. 42	0.101	0.138	0,132	0,124	501.0	0.064
and the SQL PA DATE (1985)	D 11	0.205	0.203	0.199	0,194	0,183	0, 153
	Emraies	3.00	3.01	3.03	3.05	3, 10	50. D
		70	1/21	121	4	S	V

	۲	,		* 9	6 * 40		
	о Д	بد	4	ب	م ک	الد	ر پ
	Energie	المعه	ımag.	real	Imag.	Veal	ı waşı,
7/2	3.00	865.0	0.373 -4	-0.210	0.390 -5	-0.437	0.984-3
12,	3.01	0,395	0.344 -4	-0.212	0.492 - 5	-0.428	0.992-3
2	3,03	0.388	0.372 -4	-0.205	0.480-5	-0.425	0.100-2
2,	3.05	0.381	4-404.0	-0.200	0.455-5	-0.421	0.101-2
S	3.50	0.366	0.492 -4	-0.188	0.365-5	-0.413	2-201.0
S	3.24	0.333	9-181-0	991.0-	2-861.0	0,390	2-401.0
ट्य	3.24	0,332	0.772-4	-0.166	5-101.0	0.390	0.104-2
	÷						
		~		-			

·	b					<u> </u>			
•		D. 33	0,417	2040	0.403	0,402	0.400	0.396	0.396
		D 32	911.0	0.1.0	811.0	0,118	0,118	0.117	0.117
• .		D31	0,467	O.477	0.479	0.480	0.482	0.487	984.0
		N 23	0,075	0.078	180.0	0.084	0.092	0.11.0	0 : 0
* 9	G	J. 22	0.537	0.537	0.531	0,525	9.5.0	0,482	0,482
		ر <u>ة</u> ح	0,388	0,385	0.388	0,391	0.396	0,408	0 4,0 00
		4	0.508	0.517	0.516	5,513	0.508	0.495	0.494
		d d	0.347	0.345	0,351	0.357	0.370	0,400	10,40
		44	0,144	0.138	0,133	05/0	0,122	0, 105	0,105
	01	Energies	ئ. ئ.	3.01	3.03	3.05	3.10	3.24	3.24
	f.a.		S.	4	4	لح	₹	~\$	ත

	5	imag.	0.758-2	2-991:0	0.803-2	0.846-2	0.845-2	0.884-2	0.942 -2	0.939-2
	2)	real	0,753	0.258	0.257	0.256	0.256	0.257	0.260	0.260
12	23	imag,	0.214 -6	9-161.0	0.144-7	9-151-6	9-181-0	9-126.0	0.336-5	0.342-5
6*12	ر د د	real	-0,148	-0,150	-0,153	-0.156	-0.156	-0.158	-0.161	19110-
	~~1	. Som	0,255-3	0.289-3	0,344 -3	0,418-3	0.417-3	0,495-3	0.642-3	0.642-3
·	なる	real	9110.0-	-0.0140	-0.0142	-0.0137	7510.01	-0,0127	-0.0100	-0.0098
	7	Eregies	3.00	3.01	3.05	3.10	3.10	3.15	3.24	3.24
	į		~s	፟፟ጟ	Z	₹\$	2	2	ک	Q

						Q P				
	4		·			۲				
	Energie	D 44	D 12	D 23	D 21	D 22	D 23	$\int_{\mathbb{R}^3}$	D 32	D 33
S	3,00	0.554	5.0.0	0.374	0.032	0.926	0.042	0.414	0,002	0.584
2	3.01	0.536	0.082	0.381	0.039	916.0	0.048	0.425	0,007	0.S74
4	3.05	0.523	280.0	968.0	0,033	916.0	0.052	0,445	800,0	0.553
7/1	3.10	0.504	0.084	0,412	0.029	3.6.0	0.059	0.467	400.0	0.529
12	3,10	0,504	0.084	0,412	620,0	9.9	0.059	0,467	400.0	0.529
2	3.15	0.486	0.087	0.427	0.02T	806.0	290.0	0.487	500'0	0.508
2	3.24	0.453	ଷ୍ଟ ଓ ଓ ଓ	6440	120.0	0.897	920.0	0.520	900.0	0.475
A MARKETTAN AND THE PARTY OF TH	3.24	0,453	0.038	0,449	120.0	5 8 9	0.076	0,520	900	9.474
1										obiem de la companie

42*3	رم ر	gres real imag, real imag, real	00 0.105 0.178 -3 -0.136 0.350 -6 -0.491 0.156 -6	0.105 0.183-3 -0.140 0.151-6 -0.489 0.257-6	5 0.107 0.667-2 -0.138 0.742-4 -0.496 0.186-6	0 0.109 0.221-3 -0.136 0.409-7 -0.503 0.101-6	0 0,109 0.221-3 -0,136 0.403-7 -0,504 0,121-6	5 0.110 0.243-3 -0.134 0.528-8 -0.511 0.823-7	4 0.110 0.271-3 -0.130 0.115-6 -0.523	4 0.110 0.272-3 -0.130 0.101-6 -0.524 0.276-8
	2 ₅	Energies	\$ 3.00	N 3.01	ر ا ا ا ا	0.50	0.0	7. 3.15	23.24	83 24 44

CT Q		13 D 22 D 23 D 31 D 32 D 33	5 0.133 0.825 0.042 0.373 0.004 0.622	0 0.142 0.814 0.044 0.379 0.006 0.616	7 0.153 0.795 0.052 0.393 0.006 0.601	55 0,167 0.773 0.060 0.408 0.007 0.586	55 0,167 0,773 0,060 0,408 0,007 0.586	2 0.179 0.754 0.067 0.420 0.008 0.571	2 0.200 0.723 0.076 0.437 0.011 0.551	
10	رلم							Modern Marie	r# PlyaDa\\har ina	
Q	\{ \{ \}				CECONOCIONIA DE CONTRACTO	- Name (Constitution of the Constitution of th	***************************************		BUTTON CONTRACT	
				Market Date a sector - sector (and			PORTER MATERIAL PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE	######################################		alp Estados many
		D 43	0.336	0,340	0.347	0.355	0.355	0.362	0.372	65.40
		D. 12.	0.171	0.181.	0.199	0.220	0.220	0.238	0.28	<i>V</i>
		Ω14	0.494	0.479	0.454	0.426	0.425	0,400	0,363	<i>C</i>
·	Q _c	Energia	00°E	3.01	3.05	3,10	3,10	3.15	3.24	< C C
			S	z	2	3	Z,	Z	S	Œ.

			The state of the s		-	A PRINCIPAL SERVICE	-	REPORT OF THE PARTY OF THE PART	****
	18 2	1.	0.285 -3	0.290-3	0.296-3	0.296-3	0.310-3	0,426-3	0.649-3
		real	0.0414	0.0413	0.0412	0.0413	0.0409	265 O.O	0.0396
. A	ે	J.wag.	0.236 -7	7-715.0	7-885.0	0,420-7	7-181-0	0.110-5	0.596-5 8-6
9 * •		real	-0.0817	-0.0812	-0.0811	018010-	-0.0813	-0.0839	~0.0 & & 3
	۲ ₄	imag,	2-871.0	0.190 -5	0.210 -5	5-212-0	0.264-5	0.862-5	4-171.0
	رد	hoos	0.00030	0.00039	0.00035	ð.0004s	10000.0	-0.00282	-0.00553
	77 [1]	Energies	3,00%	3,005	3.01	3,01	3.02	3,10	3.24
			'2	S	\mathcal{N}		Ω	2	<u>~</u>

						77.9	TO THE PARTY THE DESCRIPTION IN LABOR, THE PROPERTY WHEN PARTY THE	CECUPATION TO A SERVICE THE REAL PROPERTY OF THE PROPERTY OF T	والمهاوية والمساورة وسساوريث والمالاة فللمواردة والمحدور والمالاة	
—					Sept dans mystig sykymyth merity meng generalism.	G!		A. L. Carlo, M. T. Carlo, T. Carlo, C. Carlo,	pi inglanda da sept. We denissa a renta apara com per	(1),
Energie D 11 D 12		7.2	8	\$***C	- T	D 22	r d	D.31	A 32	D 33
3,002 0,909 0.052	manust kom möd tyrmusinder	0.052	- 1	0.039	0.053	0.947	0.0003	0.039	6,000	0,961
3.005 0.910 0.052	Jankingaganga en eren Alma ekini.	0.052		0.039	0.052	0.947	0.0003	0.038	6000'0	0.962
3.01 0.912 0.051	an maring an Alighy adaptawa	150.0	CONTRACTOR DATA CONTRACTOR	0.037	7.SO.O	0.948	2000.0	980.0	O.0009	0.963
N 3.01 0.912 0.051	industrial policy of the state of	150.0	tenther transfer name in	0.037	S 0.0	0.948	% 000°.0	98 0.0	6.000.0	£96°0
3.02 0.916 0.049	ngang mengapang kepangangan	6,049	and a surfation of the paper.	9.034	0.050	0.950	₹000.0	0.034	0.00.0	0.965
3.10 0.941 0.037	azimingili yaz da di sabinabang	0.037	riAre to management	0.023	0.039	196.0	\$ 000.0	0.021	0.0026	776.0
8 3.24 0.954 0.023	الموروب توريق المراد والمعارض	0.023	of an after the state of the last of the l	0.023	970.0	176.0 176.0	0.0028	0.020	D.00.57	0,975
The state of the s				A contract to the second of th	ياسيسي في المراجع وي معاليه المراجع ال	And the second of the second o	and profit is the state of the season of the	THE THE PARTY OF THE PROPERTY OF THE PARTY O	Macing terrated insertion the management and an expensive of	ومقاميه والتهامية والمتكاف وماطيات المتكامية معاقد كالمساول لمتعاقباتها

				8 4 9	20		
	2 [H	2)	2)	עב	رم	ر2	ر م
	Energies	real	, was	weak .	**************************************	real	trag.
4	3,005	0.00802	0.712 -5	-0.0813	0.447 -8	0.232	0.504 -3
τΩ	3.005	18800'0	0.737 -5	-0.0808	0.532 -8	0.232	0,506 -3
¹ Z,	3.01	0.00877	5-1660	9080.0-	0,381 - 8	0.233	0,508-3
ζ	3,01	0.00867	5-161.0	9080.0-	0.473-8	0.233	0.509-3
てか	3.02	20800.0	5-688.0	-0.0807	0,282-8	0.234	6.514-3
اجاً	3.10	0.0120	0.184 -4	-0.0817	0.747-8	0,242	0.544-3
60	3.24	7910.0	0.416-4-0.0821	-0.0821	0.437-7	0.246	0,565-3

,	,					9				
	[I					G.				
	Energies	D.41	L L 12	7 23	Ω 2,	Ω ₂₂	N 23	D31	D 32	D 33
L	3.002	0,727	0.065	0.208	0.053	0.0 450.0	0.012	0,220	0.00011	0.780
ζy.	3,005	0,725	990'0	0.203	0,053	0.934	0,013	0.222	0,0000	0.778
' Z ₁	3.01	0.722	0,066	0.212	0.0 S	0.934	510.0	0.225	0,00007	S L L . 0
٠٠	3.01	0.722	0.066	0.212	0.053	0.934	0,013	0,225	0,00007	277.0
ζΣ	3.02	912.0	0.067	0.2.7	0,053	0.933	9.00	0,232	0,00004	0.768
4	3.10	699.0	0.0	0.254	0.057	0.923	0,020	0,274	70000'0	0,726
œ	3.24	0.602	0,0	6,299	0.069	106.0	0.030	628'0	6000000	0.671

	,		•	6 × 20	0		
	4 G		7		المع		. راج ع
	Energies	ral	, mag,	real	, gamy	hoer	imag.
7/)	3.005	0.00127	7-1950	0.261-7 -0.0507	0.275-8	0.0535	0.108-
√)	3.01	0,00132	0.296_7	-0.0507	0.132-9	0,0536	- 511.0
Z,	3.01	0.00136	0.00136 0.219 -7 -0.0536	9850.0-	0.125-9	0.0537	0.114-6
ひ	3.02	0.00142	0.223-7	6050.0-	0.309-11	0.0534	0.128 -
Z	3.10	0.00129	2-909'0.	-0.0522	7- 261.0	0.0508	0.257-
മ	3.24	0,000%	0.107-6 -0.0543	-0.0543	9-921.0	0.0407	0,569-
A 3	3.01	0.00339	0.660 - 7 - 0.00 500	-0.00 500	0.479-9 -0.0153	-0.0153	0.134 -

D.W. : Distorted wave Allioximation of Eissner et al. (1969)

	<u>D</u>					d:				
	Ehergren	A 21	12 12	D 13	Ω_{21}	Ω_{22}	N 23	Ω_{31}	7.32	D 33
W	3.005	0.887	0.037	0.076	0.036	0.963	9100.0	0,077	0.00021	526.0
W	3.01	0.887	0.037	920.0	0.036	0,963	0.0016	0.077	0,00022	0.923
Z,	N 3.01	0.875	750.0	0.088	0.036	796.0	0.0021	0.090	0.00017	0.9.0
₹	3.02	0.887	0.036	770.0	0.035	0.964	0 .00 4	0.078	5 0000 0	0.922
4	3,10	0.85)	0.036	0.113	0.034	0.964	6100.0	₩ = Ø	0.00048	0.885
മ	4	0.893	0.027	0.080	0.029	0.971	50000.0	0.078	0.00251	0.920
A3	3.01	9000 986 0	900.0	0.008	900.0	0.994	0.00007	0.008	0.000003	266.0

			:	ِ <i>۾</i>	6. 22		
	3 G		ī Ā		بر در	رد	ر ا
	Energies	real	imag.	real	imag.	real	imag.
5	3.005	1510000	7- 471.0	-0.0507	0.361-9	0.0621	0.134 -4
2	3.01	\$\$100.0	0.216-7	-0.0507	0.429-9	0.0626	0.142-4
'ス	3.01	12100'0	0,266-7	9050'0-	0,173-9	0.0627	0.142-4
ひ	3.0%	971 00.0	0.334-7	6050.0-	0,363-10	0.0632	0,159-4
'z,	3.10	0.00231	0.169-6	-0.0520	0.168-7	0.0672	0.313-4
(2)	3.24	0.00365	0.104-5	-0.0536	0.878-7 0.0740	0.0740	0,653-4
A3	3.01	0,00364	0.983 - 8	-0.00500	0,378-8	-0.00379	5-018.0

						5279				
	20 10 10 10 10 10 10 10 10 10 10 10 10 10			CALCULATION TO A PART AND A PART		4		A TOTAL CONTRACTOR OF THE CONT	Selection of the select	
	Energue	D.11	D. 12	D 13	12 G	J. 22	7.23	J 31	J. 32	D 33
22	3,005	0.887	0.037	0.076	0.036	0,963	9) 00'0	LT0.0	1,000,0	0,923
₹\$	3,0	788.0	0.037	ê/0°.0	0.036	0,963	9100.0	0.077	0,00021	0.923
4	3.01	0.89	6.033	0.076	0.032	996.0	5100.0	720.0	0.000.7	0,923
W	3.02	0.887	0.036	F 0.0	0.035	0.963	0.0014	0.078	0.00025	0,922
Z	3,10	0.833	0.032	0 0 0 0	0.032	1.96.0	\$ 0000.0	080,0	0,00092	6.9.0
A	3.24	0.809	0.038	251.0	0.037	196'0	9400°0	0.154	0,00084	0.845
A3	3.01	5660	200.0	0.00	900.0	£66,0	8 000.0	6,000,0	0.0007	866.0

4
σŽ
*
9

1					2	ಸ್ತ	ک ا	2
<u></u>	COLUMN DE TRES DE COLUMN COMPETE	End Se	3	Ymag.	non	, Lmag,	मुक	imas,
	A3	3,01	0.00247	0.00247 0.174 -8	-0.00343 0.405 -8	0.405 -8	-0.00240 0.244-6	0.244-6
II,	A3	3.01	0.00149	0.00149 0.203 -8	-0.00343 0.174-8	0,174-8	-0.00207 0.203-6	0.203-6

,	İ						G#				
		Energies	D 44	D. 12	D 13	J 21	Ω_{22}	D.23	$\Omega_{3,}$	D 32	D 33
江	A3	3.01	0.993	0.00431	0.00282	0.00327	0.975	0.0217	0.00386	90700	0.976
43 T	A3	3.01	756.0	0,00430	0.00 501	0.00327	0.984	0.0 130	0.00604	0.0 (20	0.982

(* 25 (* 25)

,			<i></i>	27		کڑ		ار د
		EMERGYES	teat	Ama C.	red	imag.	real	i mag.
	A3	3.01	9.00.0	0.337 -10 -0.002		0.572 -10 -0.0005	-0.0005	0,367 -8
	A3	3.01	9100'0	7000- 01-655:0		0.517-10 -0.0005 0.307-8	-0.0005	0,307-8

•							Ç	And the second s	de en	la (Laba, pp. sa. Arpeny amili, p. Aniza-pana Abantona	A See And Annual Section Control of the Control of
		Entropis	Ω_{11}	Ω,	D.43	D	D 22	Z 7	J. 43	Ω 23	The state of the s
Δ3 H	A3	3.01	0.976	0.0154	0.000.0	2810.0	896.0	0.0	91900'0	0.0167	0.977
A 3 T 2	A 3	3.01	976.0	0.0154	ଦନ୍ଧର' ୦	7810	& 9 b. 0	F8/0/0	0.00621	0.0165	0 27

CHAPTER VII

Calculation of the dielectronic recombination rate

For obtaining the dielectronic recombination we have to choose some energy probability distribution for the colliding electron . It is usually considered that it is a Maxwell distribution . Then we can deduce that for He $^+$ + e $^-$ the dielectronic recombination is important for a temperature around $T \sim 10^{5}$ ° K.

The dielectronic recombination depends also of the electron density . When this density increases the ionization of the high excited states of He decreases the recombination probability Burgess and Summers evaluated that for $N_{\rm c} \sim 10^{8} {\rm cm}^{-2}$ this ionization effect is still very small .

7-1 Formulation of the problem

Let's consider an electron having a velocity V and forming with $He^+(1S)$ a system having the quantum numbers L, S The capture cross section V_0 that the former system is captured into the "states" $AS(V(+)_{2p})$ or $AS(V(-)_{2p})$ is (using (5.30) or (5.49)):

$$\sigma_{s} = \frac{\pi}{2\omega^{+}} \left(\frac{\pi}{ms}\right)^{2} \left(2L+1\right) \left(2S+1\right) \left|S^{(p,e)}_{LS}\right|^{2}$$
 (7.1)

 $2\omega^+$ is the statistical weight of the initial state : He+(1s) + e^- . ($2\omega^+$ = 4)

The Maxwell distribution density is

$$f(\sigma) = 4\pi\sigma^2 \left(\frac{m}{2kT}\right)^{\frac{3}{2}} e^{-\frac{m\sigma^2}{2kT}}$$
 (7.2)

is the Maxwell Boltzmann constant. T is the temperature $f(\sigma)$ is a normalised density :

$$\left(f(\sigma) d\sigma = 1 \right) \tag{7.3}$$

The dielectronic recombination rate into $A_{5} \times 0 \pm 1$ is by definition

$$d_d(n\ell \pm 1) = \sum_{P} \int \sigma^{(np)} \sigma f(\sigma) d\sigma \qquad (7.4)$$

The symbol κ represents the summation on β consecutive resonances i.e. summation over the resonances having the same principal quantum number κ .

This gives using the energy relation $E = \frac{m\sigma^2}{2}$

$$d_{d}(nlt1) = 2\left(\frac{2}{4m}\right)^{\frac{1}{2}}\left(\frac{1}{4\pi}\right)^{\frac{3}{2}}\sum_{p}\left(\sigma_{s}^{(np)}Ee^{-\frac{E}{kT}}dE^{(7.5)}\right)$$

The resonance "being very narrow we can consider that $e^{-\frac{E}{kT}}$ is practically constant over the resonance .

$$E \simeq E_{np}$$

$$E_{np} = E_{2p}^{+} - \frac{1}{2\nu_{np}^{2}}$$

$$(7.6)$$

In the purpose to obtain a formula independent of the unit system we have to transform (5.31) and (5.53) as follow:

$$\frac{P^{2}(np)}{B_{p}^{(LS)+}B_{p}^{(LS)}} + A_{np}^{(LS)} + A_{np}^{(LS)}$$

$$\frac{B_{p}^{(LS)+}B_{p}^{(LS)}}{B_{p}^{(LS)+}B_{p}^{(LS)}} + A_{np}^{(LS)}$$

$$\frac{2\pi}{B_{p}^{(LS)+}B_{p}^{(LS)}} + A_{np}^{(LS)} +$$

and define the autoionisation probability by

$$A_{nf}^{(LS)} = \frac{\Gamma(LS)}{\hbar} \tag{7.8}$$

Hence

This formula is similar to the one obtained by Bates and Dalgarno in 1962 .

7-2 Results

7 *3 & (n) for 1 250000 x

Temperature T = 250000 K

	dd (n)	$d_d^2(n)$
n = 10	5.566 -14	5.568 -14
h = 20	2.563 -14	2,569 - 14
n = 50	4.703 - 15	4.772-15
h=100	8.152 -16	8.353-16
n=150	2.617-16	2.675-16
n = 200	1.137-16	1.148 -16
h = 600	4.317-18	2.852-18
n=1000	9.329 -19	3.414-19
N= 3000	3.455-20	1.517-21
h= 5000	7.462-21	9,862-23
Σ_n	1.482 -12	1.487-12

7*4 Didectronic recombination rates $d_d^2(n)$, $d_d^2(n)$ corresponding to $P^4(np)$, $P^2(np)$

In the purpose to be able to compare the following results to those of Shore (1969) and Burgess and Summers (1969) we shall define equivalent quantities that we shall plot.

Corresponding to the formula (38) of Shore we define :

$$\frac{1}{2} (NL) = \frac{(2L+1)}{2w^{+}A_{p}} \sum_{S} (2S+1) \sum_{P} \frac{B_{P}^{(LS)} + B_{P}^{(LS)} + A_{nP}^{(LS)}}{A_{nP}^{(LS)} + B_{P}^{(LS)}} (7.10)$$
A is notated to $B^{+}B_{+}$ by

Ar is related to Br Bp by:

$$\sum B_{p}^{(LS)+} B_{p}^{(LS)} \simeq f A_{p} \qquad (7.11)$$

where f=4 for L=0 f=2 for L to

The left and right hand side are nearly equal for X is nearly unitary . (see (4.60))

Burgess and Summers and Shore plot &(n):

$$b(n) = \sum_{n=1}^{\infty} b(nL) \tag{7.12}$$

On figure 7*1 we give our results for k(NL) for N=2to 7. On figure 7*2 we plot 6(n) obtained by our method and by

$$\alpha_{d}(n) = \sum_{LS} \alpha_{d}(n\ell \pm 1) \qquad (7.13)$$

We also computed $d_{\lambda}(\kappa)$ using the "overlap correction" developped

in 5-1. The correction is very small and is not large enough to be significant.

We did some computations replacing $P^1(n)$ by $P^2(n)$ into (7.9). The results become different only for n large, as expected. We give some results in table 7*4 corresponding to the temperature $T_2 250000$ K.

On figure 7*5 we compare the total recombination rate

$$d_{tot}(T) = \sum_{n} d_{d}(n,T) \qquad (7.14)$$

with Burgess' results (1964). Burgess also included the recombination from N=3,..... This contribution is of the order of 10% of the recombination from N=2 whereas the difference between our results and those of Burgess is significantly larger than this correction.

CHAPTER VIII

Conclusion

In the earlier chapters we gave a theory as well as a method for computing the dielectronic recombination quantities in the case where there is a strong coupling between the degenerate closed channels. In the case where we should have non degenerate target states the method could be simplified for we should not need any diagonalisation for the asymptotic potential.

The results obtained for He⁺ are in between those of Burgess and Shore. We think that Burgess overevaluated the autoionisation probabilities using the Bethe Approximation and Shore under estimated by neglecting some "small integrals" and the interaction probabilities between closed channels (configuration interaction between resonances).

Appendix 1

Study of $A(\epsilon,\lambda)$

 $A(\mathcal{E},\lambda)$ is defined by (4.14). For $\lambda=\ell$ it is possible to express $\Gamma(\kappa+\ell+1)$ and $\Gamma(\kappa-\ell)$ in function of $\Gamma(\kappa)$ using the canonical relation

$$\Gamma(x+i) = X \Gamma(X) \tag{A1}$$

and to obtain the polynom

$$A(\varepsilon,\ell) = \prod_{p=0}^{\ell} (1 + \varepsilon p^2)$$
 (A2)

We are only interested by a very small energy region, just above and under the threshold. We can consider only the first order of the polynoms:

for
$$\ell=0$$
 A $(\epsilon,0)=1$
for $\ell=1$ A $(\epsilon,1)=1+\epsilon$
for $\ell=1$ A $(\epsilon,1)\simeq 1+\epsilon$

It is logical to think that for $\lambda = 1.6$, for exemple, $A(\epsilon, 1.6) \simeq 1 + \alpha \epsilon$ where $1 < \alpha < 5$.

We checked this idea by building a programme for computing $A(\epsilon,\lambda)$ for λ real and $\lambda_{z-\frac{1}{2}+i\overline{\lambda}}$. On figure Λ^{*1} we give the results obtained for $\lambda_{z-0},4,4.6,2,9.237$. We see that for

€ between = 0.02 and + 0.02

$$A(\varepsilon, \lambda) \simeq 1 + A(\lambda) \in (A3)$$

We also give the immaginary part of $A(\epsilon,\lambda)$ for $\lambda = -\frac{1}{\lambda} + i\lambda$ $\bar{\lambda} = 0$, 0.9963, 1.3829. The real part follows also the same pattern We deduce that (A3) is also valid for λ complex.

On a larger energy scale $A(\ell,\lambda)$ keeps good properties and we can deduce that $A(\ell,\lambda)$ is slowly varying .

Appendix 2

Study of K(v, x)

 $K(\nu,\lambda)$ is defined by (4.17). We saw in formula (4.18) that $K(\nu,\lambda)$ was real and positive for any λ real or $\lambda = \frac{1}{2} + i \bar{\lambda}$. Now for $\lambda = \ell$ using the formula (A1) we have

$$K(v,l) = \frac{1}{\Gamma(v)v^{3/2}} \left\{ \frac{(v-l)(v-l+1)---(v-1)}{(v+l)(v+l-1)---(v+1)} \right\}^{1/2}$$
(A4)

That gives at the first order

for
$$l=0$$
 $K(v,0) = 1/r(v)v^{3/2}$
for $l=1$ $K(v,1) \sim (1-\sqrt{|e|})/r(v)v^{3/2}$
for $l=2$ $K(v,2) \sim (1-3\sqrt{|e|})/r(v)v^{3/2}$

(E= - 1)

In the purpose to make dissapear the behaviour in $\sqrt{161}$ we shall use a quadratic scale . On a similar way to Appendix 1 we built a programme for $K(\vee,\lambda)$. On figure A*3 we see that for any A real or $A_{\tau-\frac{1}{2}+1}\tilde{A}$ $K(\vee,\lambda)$ is at the first order:

$$K(\nu, \lambda) \sim \frac{1}{\Gamma(\nu)\nu^{3}\lambda} \left(1 + \beta(\lambda)\sqrt{161}\right)$$
 (A5)

Appendix 3

The $\mathfrak L$ matrix is real and symmetric

We are considering the transformation from R to R

$$F(R,r) \sim \{s+cR\}$$
 (A6)

where
$$S = \frac{1}{\sqrt{R}} \sin(x)$$
, $C = \frac{1}{\sqrt{R}} \cos(x)$

X is defined in (2.17).

For the three degenerate channels let's define one coulomb phase only i.e.

$$A'_{1} = A_{1}$$
 , $C'_{1} = C_{1}$
 $A'_{1} = A_{2}$, $C'_{i} = C_{2}$ for $i = 2, 3, 4$ (A7)

Then we define

$$F(R',r) \sim \{A' + C'R'\}$$
 (A8)

We have

$$\Delta = \Delta' \cos \varphi + C' \sin \varphi$$

$$C = C' \cos \varphi - \Delta' \sin \varphi$$
(A9)

 ψ is the phase difference

Let's prove that R is symmetric

$$\begin{array}{ll}
\mathbb{R}^{T} &=& \mathbb{R} \\
\mathbb{R}^{T} \left(\cos^{2}\varphi + \sin^{2}\varphi\right) &= \left(\cos^{2}\varphi + \sin^{2}\varphi\right) \mathbb{R}
\end{array} \right\} (A11)$$

This gives

By adding to each side $siny siny - R^T cony siny R$ we obtain

Finally we have

(A14)

$$R'^{T} = R'$$

Due to the properties of A' and C' \bigcirc commute with

them.

We define

$$G(R',r) = O^{T}F(R',r) \qquad (A15)$$

we have

$$G(R',r) \sim (\Delta' Q^T + C' Q^T R')$$
 (A16)

We have also to define

$$G(\mathfrak{A}',r) \sim \mathfrak{A}' + \mathfrak{C}' \mathfrak{A}'$$

we obtain

$$\mathfrak{A}' = \mathfrak{Q}^{\mathsf{T}} \mathfrak{R}' \mathfrak{Q} \tag{A18}$$

by consequence we have

$$\mathfrak{A}^{\mathsf{T}} = \mathfrak{A}^{\mathsf{T}}$$

Between A^* , C^* and A^* , C^* there is aphase difference as between A^* , C^* and A^* , C^* . We can deduce that $\mathcal A$ is symmetric because $\mathcal A'$ is symmetric. $\mathcal A$ is also real because all the transformations used were real.

References

Chapter I:

Massey H.S.W. and Bates D.R., 1942, Rep. Prog. Phys., 9, 62

Bates D.R. and Dalgarno A., 1962, Atomic and Molecular Processes

ed. D.R. Bates (London : Academic Press) chap 7

Burgess A., 1964, Astrop. J., 139, 776

Burgess A. ,1965, Ann. d'Astrop. 28, 774

Trefftz E., 1967, Z. Astrophys., 65, 299

Trefftz E., 1970, J. Phys. B., 3, 763

Shore B.W., 1969, Astrop. J., 158, 1205

Chapter II:

Percival I.C. and Seaton M.J., 1957, Proc. Camb. Phil. Soc.,

<u>53</u>, 654

Burke P.G. and Seaton M.J., 1971, Methods in Computational

Physics , 10, 1 (New York : Academic Press)

Mott N.F. and Massey H.S.W. ,1965, Theory of Atomic Collisions ,

(Oxford : Clarendon Press)

Chapter III:

Heitler W., 1954, Quantum Theory of Radiation, (Oxford:

Clarendon Press)

Davies P.C.W. and Seaton M.J., 1969, J. Phys. B., 2, 757

Weisskopf V. and Wigner E., 1930, Z. Phys., 63, 54, 65, 18

Rose M.E. ,1955, Multipole Fields (New York : John Wiley) p.72

Shore B.W. and Menzel D.H., 1968, Principles of Atomic Spectra

(New York : John Wiley) p. 439

Chapter IV:

Wigner E.P., 1946, Phys. Rev., 70, 15, 70, 606

Wigner E.P. and Eisenbud L., 1947, Phys. Rev., 72, 29

Gailitis M., 1963, Soviet Phys. -J.E.T.P., 17, 1328

Jost R., 1947, Helv. Phys. Acta, 20, 256

Poincare H. ,1884, Acta Math. , 4, 215

Ham F.S., 1955, Solid State Physics, 1, (New York: Academic

Press) p.127

Seaton M.J., 1958, Month. Not. R. Astr. Soc., 118, 504

Seaton M.J., 1966, Proc. Phys. Soc., 88, 801

Seaton M.J., 1969, J.Phys. B., 2, 5

Seaton M.J., 1961, Proc. Phys. Soc., 77, 174

Bely O., 1966, Proc. Phys. Soc., 88, 833

Gailitis M. and Damburg R., 1963, Proc. Phys. Soc., 82, 192

Slater L.J., 1960, Confluent Hypergeometric functions, (

Cambridge : University Press) p. 61

Eissner W. Nussbaumer H. Saraph H.E. and Seaton M.J. ,1969,

J. Phys. B., 2, 341

Chapter V:

Bates D.R. and Damgaard A., 1949, Phil. Trans., A242, 101

Burgess A. and Seaton M.J., 1960, Month. Not. R. Astr. Soc.,

120 , 121

Cartan H. ,1963, Elementary Theory of Analytic Functions of One

or Several Complex Variables , (Paris : Hermann ; London :

Addison - Wesley) p. 151

Bates D.R. and Dalgarno A. ,1962, see Chapter I

Chapter VI:

Norcross D. and Seaton M.J., 1970, J. Phys. B., 3, 579

Bely O., 1965 a, Ann. d'Astrop., 28, 567

Bely O., 1965 b, Ann. d'Astrop., 28, 843

Bely O., 1966, see Chapter IV

Eissner et al., 1969, see Chapter IV

Seaton M.J., 1969 a, see Chapter IV

Seaton M.J., 1969 b, Computer Journal, $\underline{12}$, 156

Norcross D., 1970, Thesis London Ph. D.

Burke P.G. Mc Vicar D.D. and Smith K. ,1964, Proc. Phys. Soc. ,

<u>83</u>, 397

Seaton M.J., 1970, Computational Physics, Conf. Digest N 2 (London: Institute of Physics)

Chapter VII

Burgess A. and Summers H.P., 1969, Astrop. J., $\underline{157}$, 1007 Shore B.W., 1969, see Chapter I
