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ABSTRACT

The  dielectronic recombination rate formula of Bates
and Dalgarnmo ig justified by using,an accurate resonance:
profile theory and the time dependant perturbation method,
developped by Davies and.Seafom;.-The:ﬁbrmula oﬂ'Burgeéa for
the autoionisation probability is generalised to the many
channel problem and applied to the delicate case of He' ,

Tha:Symmetry between photoionisation and dielectronic
recombination is proved and a generalised. é; matrix
containing the photon inberaction is dednced ,

The method of extrapolation, im the case of He™ + o
is simplified compared: to Bely's method and a resonance profile
ig given that generalised Seaton's formula to this case .,

A pew formula . obtained for the dielectronic recom-—

- bination rate satisfies the two unitary conditions correspon~
ding to the collision theory and photo-emission theory .
The calculated results are compared to those of Burgess

and Shore .

LEEE SRR EE R EEERSEEERS



Acknowledgemenﬁs

I am very grateful to Professor M.d. Seaton for
suggesting the subject of this thesis and for invaluable advice
and guidance throughout the course of this work .

I wish to thank everybody in my laboratory for their
- help at different moments of this work . In parbticular I thank

Dr. W. Eissner , Dr. M. Hershkowitz and Mr. J. Wells «

I am also indebted to Dr M. Gillespie for bhis friendly
asgigtance during the wri-ting of thie thesis and to my pareﬁts
for their moral support .

All numerical work was performed on the IBM 360/65 atb
University College London .

This work was carried out under a research grant provided

by the Centre National d'Etudes Spatiales , Paris-France .

ook ok o Kk R R R R R R K ok sk R



-4 -

CONTENTS

Abstract
Acknowledgements
Chapter I - Introduction
Chapter IT - Initial electron-ion system and final wave
functions
2-1  Goupled integro-differential equabions 2
2=2  Asymptotic expression for open channels 13
2=3 E,, and é mabrices 13
2«4  Asymptotic expansion when some channels are closed 17
2-5  Asymptotic expamsion when all the chennels are 18
closed
2=6  Normalisation 43
Chapter III = Perturbation of the electron-ion sysbem by 24
the radiation field |
3~1 Time dependant perturbation theory 24
3-2 Initial conditions : 29,
3-%3  Time coupled equabions 23
3=4  Dielectronic recombination 2,6
3=5  Generalised % matrix 2.9
36  Unitarity of the generalised é matrix 30
3=7  Commentary on the former method Yo
3-8 Photoionisation : | B4,
Chapber IV ~ Study of the collision resonance structure for o4

1

+

He™ + e

Introduction 34‘




fme2
43
Bl

)

4~7
fou83

4-9

H4=10
Chapter
5=1
5.2
D=3
54
5=5
Chapter

Coupled radisl equations
Analyticity
Agymptotic potential
Solutions of the coulombic selubtion
8. ) Analytic solutions
b ) Asympbtotic form

1) & negabive

2 )} & positive

) A real
P) A o=l bA
) & = 0O

¢ ) Commentary on 4% ana ¢f

éﬁ matrix

Resonance structure

a ) General formula

b ) Degenerate closed channels

Bound. states in Tthe case of degenerate closed
channels

Weak coupling between open and c¢losed channels
¥V - Electron capture probability by photo emission
TInteraction Hamilbtonian

Bates and Damgeard coulombic approximation
Energy representation

Principal guantum numbexr represeﬁtation
Commentary on the formulae obtained

VI - Calculation of the complex quantum defect for




6=l Introduction
6-2  Bely's programme
6=3  Chapter IV theory programme

6=4  Comparaison with Norceross and Seaton's method

rate
7= Formulation of the problem
2 Results
Chapter VIII - Oonclusioh
Appendix 1 Study of A (€ )
Appendix 2  Study of K (WJIQ\)
Appendix 3  The éi matrix is real and symmebric

References

75
75

7
80

Chapter VII - Calculation of the dielectronic recombination ~108

408
44.0
448
449

1243
445

423



CHAPTHER T

Introduction

The importance of the dielectronic recombination of ions
in Astroéhysical plasmas was‘first recognised by Massey and Bates
(1942) . Subsequently Babtes and Dalgarno (1962) derived a formula
for the dielectronic recombination rate which has been used until
now for practical ecalculations .

For evaluationg the autolonisation probability required
in this formula two different methods were used ;
The first approach was given by Burgess (1964) in which he exbra-—
polated the excitation cross section of the ion through the
excitation thfeshold . Thig method proved to be excellent Ffor the
high excited states where the dielectronic recombination appeared
to be important ,
A second approach was developped by Trefftz (1967) . The idea of
Trefftz was to Solve the collision interaction by a distorted
wave approximation and then treat the configuration interaction
and the photointeraction both as perturbation ,
In 4969 ,'Davies'and Beaton gave a more rigourous formule-
tion then Bates and Dalgarno ,They supposed the problem of colli-

sion had been aiready solved and considered the photon interaction




a8 a time dependent perturbation , ,
Shore (1969) simplified Trefftz method , The zero—order
collision solution were screéned hydrogenic radial functions ,
At the first order.he-ﬂeglected the coupling between resonances
with the justifieation that " If n is sufficlently large ,
the configuration mixing caused by the Coulomb interactlon is
less significant then the spin-orbit interaction of the unexci-
ted electron ....... The neglect of configuration mixing with
the use of J1 coupling should not introduce serions errors " ,
In our method we use integro-differential coupled equations
for the collision since in the case of He® the distorted wave
approximation is valid only for 4> 5 -, Compared to the
autoionisation probability of the low partial waves , the partial
wave for 4.2;5 are very‘small and can be neglected in the
computafion of the dielectronic reéombination guantities ,
We extrapolate the reactance matrices through the exci-
tation threshold (2s,2p) using a generalisation of Burgess®
method , We also consider all the coupling between resonances

(closed~closed interaction ) ,
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CHAPTER 1I

Initial electron—ion system and final atomic wave functions

In this chapbter we define the wave functions of the system
neglecting radiation field interaction. These wave functions
correspond to the initial (ion-free electron) system and final
(ion~-bound electron) system. They satisfy the Schrodinger wave
equation, the relaﬁivistic interaction being neglected.

By decomposging these wave functions using a partial wave
analysis we simplify the problem and obtain in the place of the
pratically unsolvaﬁle Schrodinger equation a set of couﬁlea
integro-differential equations

The normalisation of these wave functions, the scattering

53 metrix and the reactance E} matrix are then briefly

outlined.

2~1 Goupled integro-differential equations

The Sch%dinger equation of the system of two electrons,

Het + e~ , is

<H - E) @(_x'xz‘) =© (2.1)

It contains partial derivaetives that mekes it pratically
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unsolvable in this form.

However solutions can be obbtained by separating the
variables (Fourier method). The idea is to write the solutions
88 an‘infinite sum of a produet of functiong. that each contains
only one variable. Each function satisfies a differéntial
equation. In our problem these functions of the variable
%, = (¥ \$¢ ,03)  ove solutions to the He™ problem fo:c' whi.ch
we know the exact solutions. For the functions for Y, ,07,
we take eigen functions of the angulaf momenta ( Normalised
Spherical Harmonic and Normalised Spin Function) . The only

unknown function corresponds to the colliding variable 1§L .

These can be summarised by the following formulae :

"P'("axm) z Z. q)?s(x,ngJ)

K_.I.)K.(Kd)(z) Cb (7(4 (\ (T)\ F:“Zf T?X

\.2.
A
d*g(xnﬁ,fx) ineludes the wave functions of the He' electron

- (2.2)

and the angular and spin functions of the colliding electron

(2+3)

with

?HW,(F\ arc - %ﬂ

W

T T et

(244)
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where ?{ denotes the coupling representation
- b
\d - (\‘\Q W\Q-NS ‘%V\Q, WA {g’ \Mf_ﬁl) (245)

(f\k‘“&““sf) are the quantum numbers of the He' target and
(%nQ‘“&““¢> the quantum numbers of the colliding electron .
Due o the conservation of the angular momenta it is better

to use the following representation :
= b b
e (n b, U s LM MY (2.6)

Then we shall define

ﬂj)(>é\xl) ::QZT KPP (x|yl) ?

L

B \\ (2.7)
L‘“\)[”‘ (_ Ry X 5 . d\)\w_\ (X \ {f\? \rY \ i \‘L{) ) ]
v,
with
[N i ~{\ SN . . . ; .
Cbp ( S e, 01) . .4:,). L Yy \) ‘\3(1 \ I “'j:’!_. 0y \ (2.8)
{a
where
g0 V%S
C v \é \ = C“Mi "J"‘jf "oy C‘ i \‘f\: \;_}‘15 (2"9)
a A8

sl being the vector coupling coefficient (Clebsch-Gordon)
The transformation matrix between the radial solutions
F%(Q},?%Ugjwill be seen later when we shall have studied the

agymptotic form of these solutionse.
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Tn order to sabtisfy the Pauvli principle we shall
! .
antisymmetrise ﬂf(x\xl\ (or QI’(XwKA)) . In collision problem

we have not the difficulty arising when the two electrons are

‘QQUEVEQQ“t

1}{ (‘X Xz) U i'ﬂf X Xa) = WAI %, X0 } (2.10)

Introducing (2.10) in (2.1) and using the hypothesis that Ctlﬁ
(or dD ?5-) are a complebte basis we have in place of (2.1)

the following infinite set of equations

(Cpr\) ‘ H-E \ VLUA 3 = Q | (2.11)

This in turn gives the infinite set of coupled radial integro=-

differential equatbions

{E,’f} _ ) b X +.?<<°:;7§ F \ Z. UN.. () 2.12)

dev Mok 'S

where\mey is an integro differential cperatér (see Percival
and Seaton (1957)). |
U = O if Lal ev S48
(conservation of the snguler meomenta)
: Lﬁﬁrisiindepenéant,oﬂ M, and Fﬁs (Racah tensor)
If we take, in (2.3), PLg(F)real and for \fhme(Q)the
classical normalised spherical harmonic L)PP‘(r) becomes

symmetric and real.

Ut""{“ =y Ur‘“’w) ( ‘ (2'13)
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In chapter IV we shall use only the asympbobic expression of L)

oA e
e (2.14)
U "\ \-'\\ ( \{h \ (f:::() : ‘(‘\ ?@

The partial wave analysis conserves the energy :

2 1.
-+ % b %
E - Ewﬁ <+ ,,_f - k= Wt + ,,,5‘.) (2.15)

whefe EZiQ is the eigen energy of the target He' electron (nl)
in s.u. (atomic uwnit) . We can renormalise the Het target energier
sé&hat they are equal to zero for the ground staﬁe and are posi-
tive for the excited states : E*Us)gns s Eﬂ(XSyﬁg*&b}:Eﬁga.u.

In practical compubations it is impossible to solve an
infinite number of cdupled radial equati@ns . We shall reduce
the He” states to "1g" "2g" and “2p" sbtates (they are usually
called terms) giving 3 or 4 equations, (2.42),rcorresponding
to the 3 or 4 elements of the swmmation for T*ff(x‘xl\.ﬁs we
shall see in 2-2 for each energy Eowill correspond 3 or 4
independant physical solutions.

Using Kohn variational principle and formula (2.10) but
not (2¢11) it is poseible to obtain the coupled equations (2.12)

for the former approximate expansion (see Burke and Seaton (1971)

2=2 Asyﬁﬁtotic expression for open channels

We suppose all the - t‘}o (it is said that all the channels are

. \ ’\) \ A
open). By choosing the former convention for -hgh)and /%Me(if)
we said that k)pwg becomes real and symmebtric. Then every
coefficient in the coupled integro-differential equations (2.12)

L~are real
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and we can deduce thabt it is possible to find the same numbex
of independant real function that it would have been for inde-
pendant complex functions. Also it is easy to prove that the
maximum number of independant solutions is XV .
Por large Y, the equations (2.12) tend %o coulomb equations
and we can develop asymptotically the solubtions on the coulomb

solutions (regular and irregular)

Ll (o |
F}L E:; ﬁi; ﬂﬁn wa(x} +-%FLC@7(x\ (2.16)

I corresponds to the eguation, L to the solution .
. , ‘
X = “?Qh(‘ ~ ’{_;B_, 4 Jm. L \i%@th’ 3 +arq T"(Jhrl-«k,_) (2.17)
2 fein k

Now by taking the physical boundary condition
Flo)co (2.18)

we eliminate half of the independant solutions.

Tet's write a basis set satifying (2.18) on the matrix

form (n,n)

i

(2.19)

-

Vi

e

we have
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~ wlzw % A (X)) ﬁ\ & e () % (2.20)

~ V00 \Y
The matrices having the symbol “AM" under them are ordinaxry

matrices, the other ones are diagonal matrices e.g .. ;
¥k,
A (%), we (%)

2=3 Fi and éS matrices

We (;mw, gﬁaﬂ fj«-ooﬁ\& ‘o '[ua;av; MK JE\O»U'\V\%' ./HML ﬂ%e&owmg}
a/%w\kbho Dhanews, 3

\l R Y\) el &\V\(,%)%C@?(}é) %P( - (2.21)
~ 09 (‘K . 5
where
5 -
;P: - b /,i‘ (2.22)
mqi’rl\x
Fi— is called the reactanceYfor it represents the departure

from the coulombic problem ( Rmu&, = O e

Using the Green theorem it can be proved that E& is
gymmetric (and real) hecause \})  is symmetric (end real), see
for example Mottt and Massey (1§%5).

Due to the particular agymptotic form (2.21) we can denote
the indices of ff(?hv) by I and I?), "’ is called "the entran-
ce channel” and J' is celled "the final channel® : F;p'(E§A*}

Tet's define another set of solutioms but this time a

complex one :
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r (é )~ _\i% { exp (-ix) = exp () é (2.23)

where

é = (<L+L%)(4QLF§_Y{L (2024)

E being real and symmetric 6 is symmetric and unitary .
On a similar way we can define Fgg) corresponding to
the representation ‘Cg) (2.5) « The relation between \S“ékf !

and 5 e is

Sep = 2o () S (M1%)
| rr
If we consideQ%oulombic plane wave of electron on an ion in
the state (lm?mems) it is possible, after a partial wave
decomposition, to relate 5\&3’ to the probability of transition
during the collision . Therefore S has been called the

scatbtering matrix . The conservation of the electron flux is

s consequence of the wmitarity of S

Ll

=

5+ S5 = 55 L A

50,

LS

5 " is the transpose conjuguabte of S .

The relation between é and B can also be written :

: . —A . .
\5 z ( 4 - L.rEf: \ ( A4 L \) (2.25)

This formula is sometimes useful (see Chapter IV  (4.37))
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2-4 Asympbotic expansion when some channels are closed

When some channels are open and some are cleosed the
energlies of some terms E:{y’ are greabter than E and the

- <0
, ™ ] —vG v
The coulombic solutions are then elther divergent (%ﬁ;) € G

L A 1

oy convergent Eﬁ v ¢ v  where ‘?Q - -—J- (\)\\ > 0) .
Y N \)“?’

The physical solution  which corresponds to an open

corregponding channels have a negative energy

entrance chamnel 1 has final channels being either open

[“) or closed “ but for the closed channels the
~asymptotic FT“P must be convergent . By doing a linear combi-
nation of the n solutions we can eliminate the divergent part
and. obtain n' convergent physical solutions (n' equals the nume
ber of open channels, n" ig defined ag n'=n-n' ) .

Their asymptotic form is :

N A | ) ' \ “
Fon (R0 ~ = R COLRREAY \@wlg
(2.26)

e

— W
Foe (R0 ~ (%ﬁ) v g

Yﬁ\‘\ o

ERJ is a (n',n') nmatrix. With dr%\we can form a mabrix ££

et

(n¥,n') . g&» is symmetric (and real) therefore we obtain

from it a o matrix symmetric and unitary :

Ll

v N 3
_ . \ -~ UK LX
Fon(300) v b {0 e S
ket (2.27)
Tb

't

| \J“
F\.,,\\\“,,‘ (j\ '(’“\ o~ (‘3'_3‘\ e (or\u.r\
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where

;ﬁ (/L + Lw@J} (4 - L@LYL (2.28)

the relation between the g matrix (n",n) and the matrix ad is

cor g (s-iv)™ @)

——
[

%

(} is a real matrix)

2=5 Asy-m;gto*t;ic expansion for all élosed channels

When all the channels are closed it is no more a problem
of collision but of bound states .
It is always possible to find for any negative energy =

a basis set having the following asymptotic form :

Mg Y

g ()~ Kav) ey - (‘151\ . (ﬁ " (2.30)
1 A% ’ N ) }

But the physical solution must not conbtain divergent elements.
It is only possible to find physical solution for particular
energies called eigen energies . It is then possible to find
a nscolumn mabtrix 5:} 80 that

¢ ““-L -

) 0 (2.31)

fac v \(ﬁ

P .
Then the column matrix physical solution 3\(’? \13 equal to
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) (2.32)

2=6 Normaelisation

In order to use the wave functions in a perturbation
problem we need to know the normalisation of these wave functions

For bound state we want orthonormalised functions il.e.

’1}:(%&\ @A} ) = S (2.33)

where SE;O if the wave functions correspond to different
energies andrgrii for the seme eigen-energy . We shall prove

in Chepter IV that (2.33) is satisfied for

Mo KX (2.34)

o~

b
2 . 2 T
where K = R\)V[\){%\)-H)Y (‘\)m-Q}} and. X 2{ - 4
T ' Ny
( }{' is the ftranspose matrix of zé )
In the case of all open channels we obtain, using Green

theorem (see Mott and Massey (1965)), from the definition of
F(g,r) what

o0 ) . |

o)

!
wheref?and~5 are the scabbtering mabtrices corresponding to

An N
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J
the energies E and E .
For closed and open channels the same relation holds

R
with ‘ﬁ and é:g .
N.

e

e e ok sk ke ool ok Sk ok ok o ol ok ok
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CHAPTER IIT

Perturbation of the electron-ion system by the radiation field

The time dependént perturbation theory is a powerful
approximation for application in problems dealing with the
radiation field. Many such applications are mentionned by
Heitler (1954). For btransitions between bound stabtes the method_
gives a reliable theory for the matural line breadth (Wigner
and Weisskopf, 19%0). Davies and Seaton (1969) generalised
the former theeory to the case of fTransitions from free to bound

electrons. Thelr paper is summarised in this chapter.

3-1 Time dependent perturbation theory

The idea is to comnsider that before a time b :;fzo there
is no perturbation.
If we consider only transitions between bound states,

ignoring the continuum, we can expend the wave function as follow

. . .H.LE 't.«
W) = 20 A )y e (3.7)
YLJ .
~LELL
where \vh’& are normalised eigen-solubtiong of the time-
dependent Hamiltonian before ¥ =%, . The initial conditions |
are wa(&o\zd,, %&(to):g for | #L § the system is in the statg(

By introducing (3.1) in the Hamiltonian equation
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AR S ) G
2t

we obtain for %, (%) a set of time coupled equations. When
increases to infinity the system tends to equilibrium. At the
limit, L= +00 , the expected results are obtained : -4 (00)
represents the probability to be in the state w. after the
perturbation.

The same method can be applied for the continuum by
changing (3.1) into the integral

-LEL

@r«(t)"—“ 2. o\EJé:%(E\a .{m(a,m (3.3)

- T LT

"th (E) is the antisymmetrie function defined by (2.10) to

which corresponds FPP;(S‘P),(2,26). The coefficient -——— has |
been introduced so that thefunction.$éz"q4\(g) is normalised
2T

to the Dirac function in energy (see : (2.35)).

-2 Initial conditions

At the time hb:ﬂD the colliding electron is far from

the ion and ean be described as a wave packet having a dispersion

Y
8§ ¢e ) arvound Y=o and an energy £=-£_ (158" being

large). The electron-ion system is in the state F; , & is

néhore an elgen-value.

Moo= (naG & 08, L, Mo, M)

(3.4

{-

- ra vy - A

— .. - 4 TS %
t - E’- hoeﬂ -4 /&9 ) t‘;‘g b E V"\Q‘Qg <} %’0 /)

2
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The probability eoefficient .Q v(E \k«) for Lz _=0

represents the wave paclce‘b' ag defined.

7 , ’183 yz, .
Fer (E.0)= 3(n) (5\’”@73 oxp (LX) (3.5)
(k-k)Y +8Y
the definition of X, can be deduced from (2.17).

‘Fpr‘ (E&;,@') is normalised as :

_:T ™
? 4 E \,QP%(E]D\\ = A (3.6)
and using (2.10) ~and (2.7) we obtain

. Y, | L o
‘@V(\@ (Q) = ﬂ Ct)ru (X\ Q&Q}_} ié:_.%q Q«X\’ (""Lb(n')(cJ —“\‘f‘iwa\gs (5.7)
[ "{‘L
where ;ﬂ; is the classical anbtisymmetrisatbion operator.

"hen we have

(qu\m(cﬂ \ ﬂ;ﬂa(m\\}mj = i (3.8)

3-% Time coupled equabtions

The Hamiltonian for the interaction of the radiation

field with an atom is | a2t the fust ordes

ey =

¥\ :: — o A\ . 55 (%.9)



.

1
A dis the fine structure constant, A the vector potential

and i? the momentum of the atomic electrons.

A multipole expansion of the radiation field can be done,
(Rose,1955, and Shore & Menzel, 1968) after which only the
dipole electric term is considered. Then the radiation field
is quantized and we can calculate mabtrix elements between

free states without a photon and bound states with a photon.

H 4,8)= (mr\»x % | (renrar )C}}L 5.5 (3.0

st Hk@\t 55 H H

v J G WRr g4

M"E  corresponds to An initial free stabe represented by the
coupling [° and the energy £ . Similarly T“} repre-
gsents the final bound state. |

During the inbteraction all the bound states plus,phatonf

must be considered, included those for an energy (L + B .

R 11
N o= B+ W (3.11)

where QQP) is the photon energy. In the resonance energy

region ujp; is pratically constant compared to (FE&“?&\\P’) ’

30 we shall neglect the slow dependence of j%[pp;over O, .
Tet us introduce the probability density ‘g{v(il‘t)‘ZJ

|
that a photon, with a frequency bJP;, has been emitted leaving

the electron-ion system in the. bound state P, e With this

definition of %P,th);the former hypothesis and (3.3) The

time coupled equations are :
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A £ (e ) it gd ) e
e SR : Qg () e qQk
O\L T I rr 3‘\\( ' ) (5.12)
d g o) = T (ae AT T e )
where
e
“H‘rp\ (9.€) = = I‘P‘(E) CHL-CEH gssl Mg (3.13)

in the formula (3.10) and in the definition of 3P,(ﬂ.‘h)

we do not speeify M_ and Mg for the dipole interaction is

a Racah tensor. If it is necessary to specify H,ﬁ 5 MS the
corre%ponding probability is 5 NEL ‘t) mualtiplied by
L45L
. is called the reduced tensor
MLq M gs sl S’ SLI r'
componen"b.

For simplicity we shall use matrix algebra. Let's
introduce &‘E(Gl“ " and g{ (£, 8) which represent respectively
the n-~column mabtrix of ﬁhef n fEf &) and the p-colunn matrix

of the § (sn.bt) ( ™" corresponds to the number of channels

for the Z‘:ree solubions and "p" is the number of bound states
into which the system may recombine after photo-emission).
We have also to introduce -E(G:‘:} and é(ﬂ.{f) for the
%{; {,P(El(g) and %ﬁ)r’(-ﬂ.i} R J{(&,) B and fH;+ (&)
represent the (n,p) matrix of the (‘}j“rrﬂ (¢) and the (p,n)
matrix Hermitian conjuguate of YL{&) .

Then we have

o

, . nk
Bek) - L O dte) S‘—‘m« S %(«“ﬂ’” Z

v

‘ dioy ~LEE
%(ﬂ&")m Lot SO\E'E f}k\"(t;\e," -E(..E\b\ S (3.14)
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For convenience in the caleculus Davies and Seaton

introduced the following matrices :

HOBPRFCE RS AL
' (3.15)
G(e) = ¢ jaa et g ra )
Then
- FlEL) = %(;(_e) & (e)
. (3.16)
(I ,
Q,"“LQ" 3(,{‘4&‘{3] - F(&)
3-4 Dielectronic recombination
Now in the case of dielectronic recombination
(3.17)

8(},&,@} = O

g

(For photoionisation initial condition see 3-8)

By integrating the two equations (3.716) we have

,{:,
() S dr e FEG () + Llewo)

© (3.18)

g (aE) = S dr ¢ U E(T)

%&E‘L) - 3(«

Lavas

|
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Then by substituing (3.18) into (3.15)

e

E(t\:igdeﬁﬂﬁigtM{qiw)Sztgar%(w)+£{Ep%

¢ (3.19)
" N ) ! &_ v
(E(t) -\ \d.ﬂ. QWLJL S Ay g,tn"’t’ S-_:- (ﬁf;)

By interchanging the order of integration and using the

relation

A0

Su(iﬁrx- L S dSL,eLJL” (3.20)

AN

we obbtain

s

t
G(t) < 2w g S(t-v) F(v)dT . ome ULE) (3.21)
o
(3.21) contains the hypothesis that QR,(E) “is independant
of (1L . i
Now from (%.18) and (%.21) we geb

s

fleg) = ixmdle)g(ew) « Lleo) e

a@(’om'w
In the ?ﬁeasttj part we shall derive the formula for S( E 1<>0} .
From (3.18),(3.19) and (%.21) we have

Fam

" Lo (3.23)
el S‘**‘-‘ o) e"‘“{iha.u e S‘;“”‘“E(’f&

o
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We define the ILeplace transform of E (Jc) as

Ci)(‘é-) = S o\‘c‘ e,"'s’t E(t) (B.24)

)

We have | g(_.ﬁl,co)a-—_ &éro d(-lo+e) (ev0)
By integrating (3.23) we obbtain '

s

% 1+ L (5)% d(s) = ™M (s) (3425)

where

L(s) = = 5 se Jtte) gile)

S+ E

(3.26)

o L d

H(S) = J‘- S OE J-Uv‘(e) "(’ LE\Q\-
) S+iLE

Using the definition (5.5) of —1; (& lo) Davies and Seaton
proved that '

Ao Mo(=0ire ) = Qim (L0 0) G2
E-a0 7 = -
(e 0)

thus
g{fo0) = LW @{ A 4 %(J)mﬂ{\df (1) ,\1(“(‘1,‘@“} (3.28)

Hence from (3%.22) we have

{(E ) [4, ..zﬁtqg(,e){iq;(m{‘t!g(e\] 'E(E'O) (3.29)

where 2 (ﬂ) _ L X g e et (E) JL(EW) (3430)

(éé:joo) ‘ E"'JL—-i_E‘.
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3=5 Gensralised ;é>matrix

In collision theory the element ‘Srhﬂ of the‘S natrix
is the probability that an electron arriving in the chamnel [
’ |
leaves in the channel ' ., Therefore if we neglect the radia-

tion field interaction we have

*:é t (g,0) | (3.31)

This is the row matrix of the probability flux of oubgoing
electrons corresponding bo the initial condition {& (E?,C)\ .

If the radiation field interaction is ineluded (3.31)
becomes

§ [ e o) | (3.32)

il

By using (3.29), (3.32) can be expressed in a function of.ﬁ(Egox

3 JL L= 2ot [¢+%]“4’3§+§ L) Gon

We define a generalised.vg mabrix which includes photo-
interaction. Then in the case of collision scattering without

photon emission the old E; matrix is modified to :

Fa o

§§(Q‘“ = O {mzﬁ% [M%T\ %"‘ g (3.34)

The difference of flux between (%.%1) and (3.32) corresponds to !

the recombination flux into bound states with the emission of a
|

photon.

3 (E,®) = 2o [M%T‘ U;Ui(E‘o)

LS

(3.35)



This gives the §> matrix for photo-recombination as

_ N ‘ -1 (3.36)
.%(‘_Pe) S e [¢+£] 5%'\’

3=6 Unitarity of the generalised é$ nabrix

In their paper Davies and Seaton proved the useful formula

I A W TR (3.5)

3

Using (3.37) it is easy to check the unitarity of the generalised

§§ matrix

giafetee) - gtetgtee) (3.38)

P

A= Gommentéfy'oh the former method

In the case of dielectronic recombination the time-
depeﬁdant perturbation theory is very suitable since at the begin-
ning the colliding electron and the ion are far apart and that
" the electron is in the static asympbtotic coulomb potential of
the ion. Bubt this reason is not enough for determining the choice
between Dwst ovder perturbation theory and time dependant pertur-
bation theory. The difference between these two theories is that
the Tirst doesn't conserve the flux of electron when the second

does. This is particularly important for large quantum number
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resonance (say resonance "n") where the probability of capture
in the first theory is constent with n ,in the second theory Wb
decreases rapidly. Awnd has for ineondement to give for the
first theory a divergent expression for the dielectronic recom-

bination rate.

%-~8 Photoionisation

The difference between dielectronic recombination and
photoionisabtion is found in the initial boundery condition :
i.e.

{t (E‘D\ - O
S : (3.39)

instead of (%.17).

By integrating the twe equations ,(3.16), we have

»*C e
’Q(E[‘g\ - 'Z;i ( E-:') S dr QL{;K %‘ {"C\

” . Er (3.40)
gla k) « S A e T E(r) ¢ glao)

Q o

and by substituing (3.40) in (3.15)

L.
v |
o) . |

this gives

\ b ’
G(E) - Som_er“"“ gmz e FEE(T) ¢ g(R.0) | B

Ge)= mi EL6) 4o Som., g (a,0) (3.42)

E
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Now using (3.40) and (3.42)

c
%(Elk)-:mliﬁ(%)gdTe&wf(T)+L¥i%)nge”ttgdﬂeﬂﬂgu&p\

Q >

(343)

‘and by using also the same kind of 'argument ag Davies and Seaton

we finally obtain

| flew) = Am (e ( g (Er0) a(ﬁ-wﬁ)) (344)

e

and
-4

a(a®) = ( 4.".'%(&3'){4,-\» *ﬁ:{ﬁu\) ‘%\&\O\ (3.45)

(o'

it

this gives from (3.44)

. 3 -4
.“E ‘c\O) = L Tf;{ (€) ( 14 %(E7> a (e,0) (346)
The symmebry of the two processes is evident by comparing
(3.28) and (%.46)

As in 3-=5 we shall now define new elements of the

generalised S . mabtrix

(ot

-4
5(?1"’) - (4'“‘;:)(4»‘_‘_.%) (3.47)



~RT

) | -*'“‘i.
émﬂf %@§T%(¢+%) (%,48)

The generalised S matrix is now completely defined
5 ( L e—) \5 (e | i: ) N\
s¢ M

(3.49)

5(?&.) 5(\‘\‘?)
Gr Pad e
5 iz a (n+p,n+p) matrix . .
From (3.34),(3436),(3,47) and (3.48) it is easy to deduce

(§6)+ éa . 5(} (éa)% , A 5,509
G |

A

Hence the 5 matrix is unitary (but not symmetric) .

Fat o

He s o ok ok o ok ok ok ok sk R ok
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CHAPTER TV

Study of the collision resonance structure for He® + o

In order to represent a resonance curve by a mathematical
formula, Wigner (19&6) sﬁudie& the solutions of the quantum
theory equations in function of energy. By fixing appropriaté
boundary conditions he succeeded in developing +the solutions as
a TPaylor series in the energy. From there Wigner and Eisenbud
(1947) defined the "R matrix theory" from which in turn, much
later, Geilitis (4965) deduced equivaleﬁt results to those
obtained in this chapber.

At the same time Jost (1947) studied the enalybicity of
the scattering é% matrix as a function of energy. He pointed
out that the equations had alresdy been studied by Poincare
(1884) who had proved the analybicity of the solutions satisfying
boundary conditions for more general differential equations.

Later Ham (1955), who was interested by the possibility of
numerical reswlts, applied the analybical properties to the case
of a short range potential combined with a Coulomb field. Follo-
wing Ham's idea Seaton (1958) proved the possibility of extra-
polating the quantum defect to the elastic phase shift.

In 1966 Seaton generalised the former theory to obbtain .
numerical results for the radisl coupled equations problem.
Hence in 1969 he came back to the Wigner problem finding a more

acourate resonance formula for ion-electron collision resonance.
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The formula contains unkhown parameters that are élowly varying
with energy and can be estimated ' by solving the coupled equationsg
for a few energiese.

Seaton's method gives very good results for many practical
cases. Bub in the cage of He™ + e~ ,due to the degeneracy of
the "28" and "2p" stabes, the long range interaction apart from
the Coulomb potential are too important te neglect as Seaton's
theory does. To improve the method for this case Bely (1966)
used.a diagonalisation method which includes the most important
long range potential into the centrifugal terms. The same idea
had alreedy been used by Seaton (1961) for improving the Born
Approxinmation. -

Bely's formulation ¢f the problem is difficult to use
therefore in this chapbter we shall try to simplify it by adding
a few mathematical hypothesis that are Justified in practice.

- Phis shall also allow us to deduce a resonance formula similar
to Seaton (1969), In the next chapter we shall use the former -

formula applied to the dielectronic recombination problem.

42  Coupled radial equations

We shall be interested only by the energy region around
the first threshold of He® excitation where it should be a i
good approximation to include in (2.10) only three ionic functioné
corregponding to the "1s","2s" and "2p" stabes. For a total
angular momentum L= o the system reduces to three equations

and for | /4 © to four .
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The following initisl and final chamnnels corregpond to

the equations (2.12)

f]__ - (is Ry o da=l, LSM M)

0, = (45 ke, fuzb, LSMUME)

o= Q%k'k3 , =Lt LS M, Ms)

moc (4 K des el LS BN
(for L=o | T4 -doesn't exist)

The "2s" and "2p" states are degenerate for He™ 1 ‘%2::%3:—%4

Using the indice i for representing [ (2.12) becomes :

{ELM.:@A% 3:,,.%6;-“% 3 ) ZUQ{U‘) (¢ ()

QJ b [}
where Eﬁ!: %ﬁy . é, represents the initial channel and A-

the final channel.

4-3 Analyticity

As we wrote in (2.18) we consider only the solutions

having the following physical property

(4e2)

F:Lar'(_c)\) - O



~R7 -

The solution vector space has the dimension K = 4 ord
Now if we take i ¥ (E,r) enalybie in energy E  in the
neighbourhood of Y =z O it can be proved (Ham,1955, and
Seaton,1966) - that F}&(E\P) ig analytic for any finite Y' .
| Let Eﬂﬁhf] be a matrix made of Y. independant column
matrix solutions satiefying the former condition. They form
a basis set and any other basis set can be obtained from Ei(£1fﬁ

by a matrix transformation.

Yt ggfmptotié“pbféntial

For Y increasing KJ- (v) tends to zero . It is possible

e,

to expand VU, (¥) as follow :

TS
Lj;k‘(“~\ = 2 Akl W2, (4e3)
gy = 1 Y-\ A
{m)
In general tﬁ,&, is small and in Seaton (¢966) and (1969)

it is sssumed that for wv, Uiu(v)z=o .

The states 28" and "2p" being degenerate then the.diﬁole
interaction between these states is very strong and the former
hypothesis is not valid at all. Following Bely (1966) (but also
Seaton (1961) and Gailitis (1963)) we sghall not neglect the
elements <x§;f for b and & oqual to 2,3,4 . ALl the other
interactions { for w»2L and also déi; for %44 ) will be
neglected .

For V'>¢, (4.1) tekes the following form :



- 3R =

r \ - \
Lot pel P AFEY @
de* v S \"Z’

where
2,00, 1) 0 0 o
A 0 2 t) L 3a, TS
.l oy Aallyk) o (445)
0 3{43‘ o 24_(04,{"\ l
ﬂ being symmetric we can diagonalise it thus
T
O A O = QO (4—.6)
T
where O is the transpose matrix of O .

T o ¥ :

- e Ll i
and O. is diagonal .

The first row and first column of ﬁ

being already

diagonalised the first row and first column of

0

e

will be
zero excepted O, =4 .

The former property of the mabrix 9 ig fundamental
in thet
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1O
™
i
™

1O

3

Now let's define

. | |
G = O F (4.8)

Lt

we obtain from (4.4)

T
o
o

. .
\(\%%d +§.’:;+€§§" T ™ )

dr® v

by defining 3\L from {kLi:TDQ(§1%{)the equation (4.9) takes
the coulombic form

{_@j_: 00y

dn> 2

-+ .‘_2:’__ + é’L} Gl (Y\)::{o AP O
v 3 (#.10)

O\L is not necessary integer and can be real or complex

—

having the form iLL':mu%i 4.idzi where M\ is real.

4.5 Belutions of the coulombic equation

a ) Analytic solutiong

In this part we shall study the solutions of

1.
{,9\_ ~ i) 2{: +€Lk‘é(€\%\“’3 - o (4.11)

drt e
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.

for auy , )\ being real or M= -% +tA with A real.
In Beaton's paper (1958) he defined for any & X

two functions analytic in energy &

A

%‘(&5‘”\ :ﬁ"ﬂ\ MK,'}\*%- (%)
¥ (4412)
™
. ‘ 4 b
(1,3&(69\\") = K ."M"'\(,-C)\_-«L pl
r(~20) * (%)
where € = % - - JKT?-* and MM ,m( P ) had been defined by

Vhittaker and Wabtson (1946).
For € >0 we take K=iy with ¥ >0 and for €<oO
K o= W with V>0 . |
) 1 and (\:j_z are linearly independant excepted for
N=4& 5 £ integer : |

i

do(edv) = — Alel) g, (elr) (#.13)

with

Alen) « T{kedet)

35 1 () (418)

Studying A (e 9\) for M\ real and D\-.:'-llv—&e‘\')\ we find thab
A(e)) is slowly varying with energy in the neighbourhood

of & = o (for more details see Appendix 1 )

b ) Asympbtotic form

The physical solutions have asymptobic boundary conditions

(see (2.21) and (2423) caess)
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A

We shall study 6\(({:9\?") and. ;jz{e: ’,}\v‘*\ for " large
80 as to relate them to these physical solutions.

The asympbotic form of the Whittaker _}’\_K M(Q) function
is found in Slater (1960).

1) & negative

For K=V a difficulty arises : the function M V. wA ('.g.',)
is double valued and the asymptotic form of both of them is
complex. But we know by developing N\,\',“(lg)in a series, for A
rea;, that '1“1,,.\,“(‘%%‘ ) is real for any finite Y . Purther we find
y in this case, that the imaginarm part of Slaber's asympltotic
formula must be neglected compared to the real divergent pa:c‘l:.‘
Hence we deduce that the imaginary pert, for :)\ real, is
meaningless, |

TOr A< - % .x.,‘L?,}'x the problem is still not solved. But it
can be seen 'that-_i“\.m(%?)is given by the same expression for A

real or A=) »%-‘;?2 » We shall suppress the gorresponding part.

amgr

2 ,
We check that this term is convergent to zero and that the

formula obtained after this operation is nobt in conbtradiction
with any relation between é‘ a;nd ;394 »
Thus for any A real or h--. i) we have :
P

3;(%9\\"\ VIR

a & A Mﬁ:ﬁ:ﬁ
- Net Aw)
Myl V} L WA PR 15)
Al - -
de (& A Y\\ ~ M WE.,_,.M ke %‘m&?i%)

v(w:}\wﬂ -2 ev)
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(the sine and sosine are defined for complex argumnents)

where
v -
geoed ()7
ey
" " (416)
O - e ¥ (%.f)
Let's inbroduce .
/, .
K (.V’O”) ) (4e17)

VAT (Ve 1) P(;J.,O\)g”"i

K(u,ﬂk) is real and positive for any N real or A - }i -+ L§\ .

For D\:M.%-\»'t‘}

K(vin) = ! TTTTET | (4.18)
W ‘P(\)-\—limk,f)\)'

(for -more deteils about [ (v )\) see Appendix 2, )

Tet's define

- \ i
T (e
2 o Cad ST

\ (4.19)
AR (3,A4=+31A”i>
> & Biw e
from (4.15) it is easy to deduce.':
P 3
A% T [ \%_,__,,,_,,._ dmv o OK v oy
500 2 y
K v~
' (4,20)

P i

(La ~4 ] E Condty  ue @I‘( \)%'A'wnw‘}
7w K, v:’i’*—

Bl
2

s 30




The functioné A° and C° are linearly independant coulom—
bic solutions for any A (real or ) = ,-_ 7). They are not
analytic but vary slowly with € since A(e N) is slowly
varying with & . For \ =20 multiplying A° and ¢° by
(—’i)l we obtain the solutions defined by Eissner et al. (1969).

2) & positive
o) A real
From the asymptotic form of .M.Km(ﬂ we obbtain

=T8Ol
~ ~ACT X i {"9& 2O foglog et o \“KM\”‘X\}
10 ey ) 2
g
~ ¢ L ”'b\\f’\ % %“- W (3\-\\)“' *El@aﬂef - at’a r‘( D\ﬂ\};)}
“ g ninn)
By neglecting '?.,“'zamﬁ compared to 1 we have
. (:%;9‘\ " (’L-fr-‘?\-*l“gf) . | milmww _ (4.22)
- e o S L)
Then
° s };‘/L s ) ke 4 ATy bag 2l +ary T‘(Dm-\zg)i
2 (#.23)

O HVL o i?«r + '2\,;_,:? +Y ro&l%z.f + ar r‘U\‘\"".‘E)%
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Using the same approximation ( e,"'?‘wz_:«.: 4 ) we have

Ay ~ B b {%\v- wylog the -2 a8 (5 ,ﬂ}

(4.24)
e~y o { ke 4y tog 2he - I (5{*6\}
with
¢ (3 @ ey P (4t sy PR

'y

) £=9°

. At the Ithreshold, & =0 , the coulowbic solutions
becomes Bessel funcbions (see Seaton (1958) formulae (18),(19))

By using the asymptotic form of the Bessel functions we deduce

e A
g = ()" wie (Tee <0 -2
= noN2 &
(4.26)
o\
r (¢ - - X
3y~ = ('3:) A (&? EYDE 7\“«3
This gives
\
’ AN
A~ m A (T8¢ -3 )
2 - |
(4427)

(Lo ~s (E)y‘% LA (m "%5




m45-—-

) [
¢ ) Commentary on A ang L

When we studied the asymptotic form we found it simple
and convenient to define the solutions 4" and c®
They are linearly independant for any 2\ .They are conbtinuous
on the variable \ (this will be particularly important in the
case of collision ion—e;ectrcn with large angular momentum when
all the A convergé to integer ) . These solubions are not
analytic but slowly varying with energy. Por € 20, they are \n
guadrature of phase which is of fundamental importance in the

following party 4-7 .

4-6  Slowly varying matrices

The transformation from F to Gr is given by the

¥ A

matrix O which is constant with energy . Hence the matrix

-

Gowill be, like F , analybtic in energy.

We introduce the new set of coulombic solubions

)
¥ 4 0 ¥ 0y o
YR O T Y e S
(4.28)

A

3
"L:' A

0 ¥- 0
o CL Gy
The functions fﬁi and C|, are defined so as to coincide with

the classical sin(x,t) and cas(x,t) where

, 0 Co
X.ﬁ': ’(’{11\“ - &.E +X1-Qo%ﬂkﬂ\/‘ + argy P(J{'d*\"‘\éd)
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Tor V"> (‘O we expand & on the slowly varying functions A*ﬁ
Vo R

and C¥
“ ‘
G[& (V‘) = ’é-b JQL‘& e C,,.tf%% (4e29)
dﬁt\& and éE%lé‘ are then slowly varying matrix elements .

4-7 M- patrix

The 8 matrix is defined as

}I o % JS&‘ o (4-.30)

e " and

A is symmetric and meal (seo Appendix 4 . )

From (4.%0) we see that ﬂ is also slowly varying with

eNergy.

48 R@sonemee structure

a ) (General formula

The ﬁ natrix has the same properties as the reactance
matrix,fi matrix, this will allow us to use the method develo-
ped by Seabon (1969).

We define

-4
?S, - (ﬂ;+'ug)(d.~bm> (4431)

ﬁ being real and symmetric % is unitary and symmetric.
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4 varying slowly, Y. ealso varies slowly with energy.

¥l

Corresponding to the S matrix in Seaton (1969) let's define
Z; so that Z: ::,'X. when all the channels are open .

G(Z ) e - N2 (#.32)

‘ z
where for 1%.,_>O (all chanmels opened) and J=1,2,3,4

4

* % - oK |
= C - - (4433)
CPJ/ d’ “’“" \4 Ad’ 3 Cbar C(} L ’é&, 2
al’ld. for J%K:i( O 4 J=2,3,4

' A
+ ty =

- gpd/ _ (H\) Yo | (4a34)

V, ' ' :

&
¢ /I stays unchanged.

We can write Z\, as follow :

N ( »L:r,g)(u.cg)”&% (8.35)

L

The definition of @ QY ’ T ) C  are given in table 4%*1
Following Seaton (1969) we define

Z -:..(/l--Tf{)({L-&«Cﬁ) (4436)

By eliminating 5‘} between (4.31) and (4.3%6) we have

Z { (A1) + (4-10)% g 2 (A ET)X + (4T wasn)

We partition Z ) % ’ C. and T in open and c¢losed parts

-
-




v )
A wk, v
\]I‘;r \Smm‘\l‘;

Lan :;T\JL

tat 3‘1‘\«";

TABLE  4+%4
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ZO\) ZOC' X’OO ?S*'oc.
Z - % -
~ ZQQ th‘f ?S/C‘O %CL
- - (4++38)
-4, O ~ 4 0
C = T
0 C 0 t
we obtain from (4.37) four equations
2L ~q0 -+ Zm: ("l "‘"C‘) %ca = ?ﬁ?oo
L. [(i-kiu) (4- mc)% ] 2% oe |
(#.%39)

2 %ca + Zeo (4.“"“‘) ?Sj'ca = (i"‘&h)?,g'w

Q\g_w[(ﬂ, + »La) ¢ (4-4c) 29“] = (_ﬁmi’iio)-\-(‘ifi’c)&‘:c

By eliminati.ng Z or Bnd 2_ et between these equations we have

4
t

BEIVACES
oy ?Sfma “?é%(%%" & mv) l}(’w

e

(4440)
v -2 ity ot
Z'Q,Q = (Jl.vt 4-3 (%cc v ) ?é‘c@
where
an‘ﬂ-‘\l _ _i;im:;éh ) . (h}j 'y Q,)

(&o41)
{144k) (\L-wg;) |
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b ) Degenerate closed channels
Sinece the closed channels are degenerate in the case of
Het + &= Saloliie

is a mulbiple of the unit matrix

2{/&@ being symmetric can be diagonalised thus :

Yoo = X X X7

(4.42)
XXT _::' XT'}’\ = 4 '

Therefore we have

Y o

Z‘oo - IX’OO 'X/Oc. (% «-1'“”“’”)\ )

(4.43)
— )
L

9w A=) )
OO = (Vk A') (%cc = ) X/m

where

)

) T ) T
‘},(:oc,': {ZS/Q""E(; ?&0025% );
From the unltar:l.ty off the ’X/ matrix we get :

+ VR ’% + |

with A>S+ :(?;ST)* ( %

: complex conjuguate )
Now if we write the eigenvalues of )(,

. ag follow :

.
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} fljrltl
- £

where
- g -
V?' = o F*r %%?
we deduce ffom (4.45)

)

M(/ <1 o]y @P:;D

el

Beaton (1969) called VP the complex guantum defect. ,
If we denote the closed channels by P and q ,and the

only open channel by 4 , . we ecan write

| | ) .
Z P = (Ltwd,,) Z_ x?“\ %‘E\_L | (4.49) .
9 %)qci -Q,” PR R

. ) }
The elements of )( ’ 56 ?(vga matrices vary slowly with

‘N-Ct', o
enerEy. N
Finselly we obtain for z:>?l
Y o %
D itk T X e
pi ? q /)() 2
1“7

4-9 Bound states in the case of &egenerate ¢losed channels
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We shall study the bound stabte case as the limiting case to

which converges the open-closed channels problem when the inter-

action between open and closed channels is very small.

In this case. ?OQG is unitary . From (4.45) we obtain

) % -4
%cc — ')6

CC

that gives

cagt
l WQFP\ = 4 (&.51)
and also that 2S 'ié real

From Chapter II (2.31) we see that the bound states
correspond to the energies when

~4
Qcc fl =0 ( 4.52)
From (4.%9) we have
: -4 :
-4 . - 2T ) LT ) T
YL A X(e +%cc) (e, ~% )X !

~ CC ITECA)Xi'W

The bound states occur when

~amw ) 21 }
— - ¥
& = Xop (
ileca
v - W = &

P - (4.54)



-5

There is an infinite number of M(.?)ma’crix satisfying (4.52)
but in fact they are all linear dependant one of the other.

One of them is :

M p = v K Xp | (4.55)

2.,.{? s the cotut‘m« b extracted ,Gmw\ X :
Using a S:Lmlla:e method to Seaton ("1966) we cen find a normallsed

solution ( 0 (v):

qé) ( ) Gq»)( Yare A - (+.58)
by taking

f}m = K%y

N
Gep = - &7 My

e 4]

(4a57)

. g b
(We neglect . the slowly variation of 'X/” with energy. This
approximation is wvalid for bound states having a large prin-

cipal quantum number : for Het + e~ n4 )

=10 Weak coupling between open and cloged channels

When the inbteraction between open and closed channels is
small the resonances are very narrow ( %’? « 4 ) . The results
obtained in 49 are true as a first order.

Tn the case of Het 4 o~ +the resonances are always nareod.
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The X mabrix is nearly real :

o~

N S 3%

FaYaarted

R
where Z<. and &i{ are real matrices. We have
| 8X | «4

Then it is easy to prove :
(X"*‘ X>FF: 1 4 (.in& ordes: & X & X )

(d\m%&h\r\o& Q»J.W’\@,\nt (‘)j‘r' X+X )
From (4.45) we deduce

> A ' NS '
| % | ~ 4 - | % | | (4.67)

and by consequence
) g
%] o~ 4 be (4.62)
Another impertant point is that we camn develop our
resonance on "normalised bound states".

From (4.57) applied to (4432),(4.50) we have

\ 3 * N | : .
Gq‘ (E ) mvies™ 2 Gmg X (#:63)
N v | %’i‘?“ a-:!m“m.

. N
where G ig the element cl of the column mabtrix G(m-

()

-



.

l.e.
" v :
N - Re
Fa® v - o
Geprg ) (g_@) Ko X (464
v
Let's come back to ﬁ (ijf ,r") (Chapbter II (2.27)), from 4-8
we have 3
. "% LTV FN %)
F;“ (7 ) i v Z (R vy (4465)
’ .._2;]\';\)
? %\??“‘e.
where

_r v | R
Fipq ™~ ¢ “(?_f‘) A 0,, K, Kep (4.66)
v

(Bq ”

-
The matrix O being orthogonal and real F(?) is a "normalised

~ bound state"” .

o e s e ol ok R e e ok sk ek A sk ok
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CHAPTER V

Electron capture probability by photo-emission

In this chapter we use the Bates ond Damgaard Approximation
(1949) in order to enable us to utilise the results of Chapter IV

in the interaction Hamiltonian,H ., (E) , of Chapter III.

re’

Hence, having a mathematical formula for ﬂ’ﬁpp,(E) , We
evaluake ; (E) by two different methods. The two final resultb
obtained for the capture probability differ by o term that is

analysed .

5w .interaction Hamiltonian

The radiabion field Hamiltonian was defined in Chapber IIT

(3+10),(3.13) as

Y )
Ko (E) = (ld’&) | (rENRU ) G
3w Varr Yeared(asei)

We shall do the following approximetions : :

1 ) We ignore the direct recombination 45kt o tsnid
that is small in the redonsnces region for He™ + e~ .

2 ) We neglect the second channel contribution ( 259l ) since
it gives only secondary effects .

3 ) The channels 2pv{+4 end 2pve-1 recombine into the

deries of bound states Asn’ €+4 and As n"{-4 respectively .
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the

4 ) The strong interaction between (2p and 18 stabtes of the
core electron produces the photo-emission .

Due to the different core configurations ( 18 or 2p )

(L)
the ouber electron radial function ]?va+¢ with core 2p
C
is different of any radial functicn £h¢%+i with core 8
2 A .
(the same holds for Eif_)i and PE,LE)Q+1 ) » But if we
suppose the radiasl functions _P:Jiz_ A constitube a complete
{(2v> :
basis for the E?vqii we have :
(zp) Cis)
th—i = %; GV£+1.,VL’Q+4. Pn’em (5.2)
with
[ve]
(29 (s)
0\)94-4, W e+iq = :P\)-QH LTI d+ (53)
O
and
In practlce, ehd decreases rapidly when the difference - \V PL\
inereases.

Using this former decomposition we can simplify the problem
by dividing the process in two parts
A = Photo-emission preduced by the core electron

QF (v?+i)lh 5> AS (¢Q+i)ak -+ wmimw

B =~ The oubter electron recombinesg with a probability depending

on the overlap integral .

5 (whed), e e o
L ::::? As (nbed)

A. - - - - .
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This approximation will be wvalid only when the overlap integral
will not spread over too many n end also when will
not be too small so that W~ .5 a,u.

In this chapter we shall only considey the part A &
Fach channel recombines into one "bound state" AS (v eti)zh.

The Hamiltonian matrix defined in 3-% conbains 2 elements :

JCE) = (3, By) (5.5)

LX)

6”41 corresponds to

i|o (v Q+|)_% e A S (vh‘\}%;r\%\ng\*ow

3&12‘ corresponds to &? (Veml)g% mﬂm%.fis(g{_x)lkq.bkotak
Using Racah Algebra we obtain :

% * (ap)

t}k”t 32‘; AP g Fa! (ﬁa”)fwﬂ v
(5.6)

A % (2p)
C}til = ;):l; Ay S \’4\ (éﬁ,‘(‘) P\JQ‘ de
with

e -

At‘ = ..;f'-. ""5“3%-\52_1\,(“\*‘?15(“)"\" f:.‘l.‘HBx\o oW (5 7Y
( Pik end Pls ere the He™ wradial 2p and 18 functions)

5~2 Bates and Damgaard coulombic approximation

Before going further we shall Jjustify the former decom-

position using the Bates and Damgaard Approximation (1949) .
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Let's consider Ghe single channel radial equation . For Y'=o0O
the bound chennel solution B, (r)satisfies the condition P4{o}o.
For V<Y, » Py(¢)depends on the core considered and for

LA 4N

function . Using a similar method to 4-9 we obtain for norma-

the solutien is known exactly for it is a coulombic

lised bound solubion :

A

—

- v o
Pu = KGO () fav el 6o
. N/ =3 ¢

Q_

| , 1
Gz O {_,L X L) - (\J-E)(\)_m—l)]}

2L

In (5.8) we have inbtreduced the full development of the coulom-
bic solution (Whittaker function) .

When V increases the radial function extends less and
less into the core and by comnsequence its value out of the core
contributes more and more in the interaction integrals ( i.e.
overlap, dipole ..... integrals ) .

Bates and Damgaard Apppgximation is to use, for any Y ,
(5.8) with a suitable cut—of@(%or the infinite sum . This cut=-
off has for purpose to suppress unwanbed divergent terms in —

oS
These terms are neglegible for Y large . The choice of the cut-

off can be varied but we prefered the one used by Burgess and

Seaton (1960) for it looks more physical :



- 60 -

From (5.9) we see that for V- v, the series is finite ab=o
for t2n-b, for { ¢ w-t o is negative . For v between -1
and W the series is negative for b<w-f and is positive for
b;;, -2 « The smallest element in absolube value \ OL{;| can
be either for tz=w-t-4 or b ‘:y\"\,-»(), «» Burgegs and Seaton's choice
for “CO corresponds to this minimal element . We tried many dif-
ferent choices and we found the results are not very sensitive
o, the choice bubt the best results are obbtained for Burgess and
Seatonschoice ( Our criteris was based on the compubed normali-
gation obtained for different ¥ o J °

Bates and Damgaard Approximation is valid for Tthe coupled
“equations if the coupling dissapears for Y‘>,tf‘° . For He™
we applied B. & D. Approximation to the bound channels solubions
for 9 Swnige the equations (5.8) and (549) are also valid for
A real or 3\:-%+L3\ (It is easy to check that for 9\'-'-\5}"\5\
the function Pv} (r) is real ) . For these A the definition of
the cub-off JCO can be generalised . |

We require to compute
00

6_,\)3‘ V’A‘ - EVQ\ (Y‘) EV'.X (\A\) d% (50‘10)

.

@
On table 5*1,5*2,5%3 we give @;,av‘m» for some values useful for

=0 and L=1 partial waves . On table 5*1 we consider f)\-_-,.‘)\,
for ¥ and v) varying from 12 to 13 . Due to the symmebtry in
Vo oand v! we give only half of the Table . We see that the

results don't depend on ?\ . We did other computations for

IV“V‘\S 4 and it trenspires from tlem that :
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N | (2)

——— ~~:!m S ; ]I PR — - — ———— -_— Lo
R=of 12, (1222416 {12.8 13, f20002. na g nens e,
— i

22]094] 4 nLloge) 4,

12410776 10.94] 4 .4 1071610941 4.,

12.6 10.5010:16 1094 4 | .6 10.501 0716 10.94] 4.

1181023 10.50{ 716 | 0,94 | 4. | 2.8 1023 10.50; 0161 094] A,

3.1 0. 10231050/ 0% 0.9 4. | 310, 1043] 050! 016 0.94) 4,

(3) | (%)

»?:\.Q 2. (21416 weli, | L220 VL \LL L4 6| 123\,

V2. 14, - 2. A

2.1 P04 .49 | 204,00 |
12.410.751 0,924 0.99 1.4 1076095403
2.6 10.50 O::IS 0,92/ 0,99 1.6 10.51{0.76 | 0.9411.00
2.8 {0.22]050(075 |00, 099 | s Jo3)ost oe] bogfa.00
V3 F0.01{03 10,50 0.15( 093] 4 3. | 0 |025]0.50(076/094] 4.

(5) (6)

o 0. g e |ns ) 1.

£ |
&
+ Danad,

2 12412.6/128 1.,

12. 1098 | . 1o

20|08 00 | w2 0.95]1.01
n.41074{092 | 0.0 4|07 | 085 V.o

ittt i m ettt ron frcemnn =
i

..610.4310:74] 0.94( 1,03 11.6/0.5V{016] 0.9511.02]

12,8 10.2310.50/0:15{ 093|098 12.8 10.24; 0.5V 019 0 96} 1.00

13.] 0 oan|050) 075 0 098 5] o o24] o5y o} 095 1.02

TABLE 5*1




(1)

.2

(2.4

2.6

12.3

-

036

030

0.85%

0.28

0.03

091

. |0%6

030

0.85

0.28

3 WP

o
0.46

0.9

1.

096

0.%0

0.5S

N7

0.9

0.96

019

019

0.A6

0712

091

0.96

- -0.02

0.20

0.46

072

09l

(3)

2.

\2.2

12.4

12.6

i2.8

i3,

. 10.99

0.97

0.%3

0.60

0.06

03%

599

037

033

02
0.60

0.3

0.67

O \%‘[

033

041

0.35

0.6o

0.4\

0.67

R

0.99%

0.

0.8%

0%

0.4

0.67

083

099

057

~0.04

D46

DAL

0.6

033

0.%9

&)

L.

1L

\L.4

iL.b

lllz

\%.

1053

0.6

0.33

0.59

YN

0,06

087

AN

096

0.3

0.59

030

0.67

087

0.98

0.496

0.32

0.54

|08

0.4\

0.67

0.%7

0.9%

0.9

0.3%

0.16

04

0.67

0,88

0.43

0.96

0,16

0.4

0.67

0.33%

0943

- b -

(2)

|82

3.4

3.6

3.3

(d\()‘

099

0.9

038\

057

0.%9

0.9

0.3

030

Rk

057

0.0%

0.2%0

0.69

0.39

.89

0.95

.31

0.37

0.44

0 63

0.2

049

056

¢ 34

0.13

0 44

iR

0%

049

036

. -0

0.8

0.44 100

040

0.99

)

\Z.

‘.1

1.4

\1.6

13

%,

{041

093

0.36

0.4

0.37

0.%0

0.4

091

043

0.36

0 .64

0.31

06>

085

0N

0.93

0.36.

0.b4

0,57

0.63

035

0

038

0.36

0.\

037

0.6

0.3

0.33

0‘9 8

. =006

015 |03

0.63

0.3%

0.98

(6)

22057
e 12

1.

2.4

G|

1.3

\S .

\1.

12.%

e

2.4

0.95

0.32

07

037

0.6b

009,

VRYA

045

0.X7

037

0.bb

0.%9

0.6y

0.32

096

0.97

0.86

0.65

1.6

b3S

0.60

O3

0.6

0.07

0.36

L3

i3

N

-0.06

0,53

0.6}

0.3

0.9%6

0.97

042

0.5

0.6\

0.3%

0.%

TABLE _5*2
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(1) (2)
Qf‘a 12 \u 11610813, :'m 0. f (1. 6]1e | 13,
2. [p.9 | 095 0.79] 055 023|003 . |0.47]0.97) 034 0.9/ 0.34] 008
122 1090} 0.49] 0.95] 09| 0.55 0.23] L1035 0.97; 0.9610.84] 0.61 |0.34
124 10:1010.90]0.9908510:19)0.55 124 10,64 0.85] 0.97{0.96 j0.34] 0,6}
2.6 1045011 1090|093 9950019 12:6]0:3910.6410351047 0371 0.
128 1049 10.4610:7% 1090 1099 0.35 mi_}\z 0.4 {0.3910.64 19351097 097
13, =002} 0.19] 0.46{ 011 {0901 0.99 ] 13, 1-005] 0.14| 0.5310.65 | 036, 097,

- (3 | (+)
:z.,i‘rm\l. 1.1 |\.4 11,6 \1‘3*"5_ WT PRANITINNANI RSN
12, 10.991 0.3} 077 052 025 0.0} 12§ 4. | 093] 014] 048] 6.1%[-0.01
122109V 049 ] 0695019 0531026 1221096 4. 1093014 0.49] 0L
.4 10712 09} 4. 10971078 /0.53, 1.4 051850.% A, [0.93] 0.14{0.49
12610471073 09% | 4. [044]0:77 16105310781 0.96) 4, {093 (014
12.8 1024 104810131 0.92] 099 024 113 [0.26/0.53| 07131096 4. |0m
13 1-001/0.2110.431 0713041089 13.10.000.26] 0,53 018 | pas; 4.

5y ©

L=- %nam« $=-24 L0044

N R [ na e iug | Is. =N LG ing | 1s.
12. | 4. [090] 070 |0.44{ 0.8 |-003 s o] 084 0 [0nb]oan 0,06
3107} 4, 1090 [ 0770]0.44 0\'3 | VL1-10.991 097]034]0.621 056|002
2.4 | 08210971 4. 0.9 0710|044 124 10,381 029 093d 341062 | DA
12.610.38)0.8210.97| 4. 0.1 (070 1.6 106710.38{0.39 0 9810 34] 0.2
LR10201053! p.32 o 4. 1091} 1.8 10.40 70\5‘1 0.331099 0,98 {0.3
'%.10051030]053 | 0841097 4, 15010024 02910,67|038 [ .99/0.99
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ATt (v-v') (5.1%)

I (v-v')

(5.11) agrees with (5.4) since it can be proved ( Cartan (1963))
that :

(}vl v)a -

|
+Qo L

< A v
' =\ (5.12)
ne-t0 (X-v Y S TR

On table 5*2 and 5*3 we give results for M:’)\) which are slightly
asymmetrical but if we compare 5%*2 (1) and (2) thabt correspond
0o A=zo eand d=4d for V¥ , ﬂ)' between 12 and 13 and
S -,)’ bé'bween 8 and 9 we see 'l:hét the asymmetry dissa-
pears when Y inereases . For Vv  large we can deduce at the
first order that
O~ ~ S (wv‘)

v VN (513)

T (v-v)

Applying (5.13) in (5.6) and using (4. 65) we obtain :

; A
Hy = - Ay ‘) uw Z.s Oae Z— x"‘l’
m %W _el‘t\"\\t’ (5044‘)
+ P 2 ).}(—
Hig = - L Aé "‘\/& LT Z 04-'5 2 X::P X -
Tor calculating the é b matrix we need to know the Z,

matrix . In the next parts we shall give two different methods

for evaluating 2 ( and Seee ) .

lasad
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5.3 Energy representation

Tue to an existing phase difference we shall cdnsider
only the case where the resonasnces de not overlap «
The resonances being very nerrow we can do an energy ex-—

wﬂ.ﬁiw)

}
pangion of (SLan around ecach resonance center \szr»sd?.

) - o 9 _Imey
TR I e _ o ) (5415)

where

a ,
8-\)‘: \)-—\)n\, ~ \)hi,(E""EHP)

' (5.16)
+ ’ .
Szv ~p |
E 1‘) is the excitation energy from s to 2p E:\ﬁ - 1.5 aw
We shall also define
| 2
r'h}) = %'F (5047)
\Qs
np
At the £irst order (5.15) is
i vg.'ﬁ'\“’ . 2 a N | .
%ﬁ’ ~Q oA Y‘“t’ Q Tidg ( E m.Eh‘3 &b %}; ) (5418)

The resonances don't overlap end the coupling between open and

closed channels being wesk we can deduce

neer Y = »hﬂi

(‘J{ J‘E) A Z_O D' x"‘PXSP he (5,19)
~ o~ g 4~tn*’ s (E-Enp)+ ‘“‘ag,
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)
L} and & are defined as follow :
L=l e V=B
L‘.'_zv D L):q—

From the Residue theorem we have :

- . %
2 (E) = L Ay Z Oy, Oy Nur Ksp

~ 2 ks (E ~Enp) +4,F e
we define the column matrix (2,1) S 2 b by

J
: 2;
%%I’ = Ay §2\ 25 P
where
) . 0324 033 O 34
O =

O‘I—& 045 OM-
‘ Xf’ is the eolumn number p of ><

Z(g) - 2 B_B

2 E-EhP+LFLP
Y

Then
-
~{

(p.e) v : . +-
ST s o V(BB 4L 4L BB ) B, T
~ ( . h? E h\Q 2’"‘2 N“')

the same for A, and C\f)

(5+20)

(5621)

(5422)

(5423)

(524)
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b
( Y is a phase depending on mg_(‘)(,:,?) and A (?C/r\) )
The right hand side of (5.24) conbains a matrix (2,2) to

inverse . The formulation is simplify by using the following

- formula
Ve o= B (14 A 8te Yt
(Av2 AR ) B =B S R2 (5425)
very easy to.p:rove since
SN
(4+382 ) (4+28B)B =B o
(1enAas Y e (4+ABB) 2 B (5:27)

- )
Thie gives (5.25) by multiplying (5.27) by (A+ F}}f%) o
We have ‘

(Pe) @ -4
ST e 8, (E- o+ h\,ms Bo)  (5.28)
4 .

'E)f e)? is a single element matrix .

%:%F T A,{& ,\; Xapt Oy X, Q i XMO Xl‘;\aﬁ) )(5‘,\91(.5,29)

The total recombination probability is
BB, T "
(5430)

$(?\“)+5(F"f’) _

-

Lt
l E-E h\a +}:§/th 4‘%%\5 %f\
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and if we integrate over the resonance we obbtain the probabi-

lity to recombine inbo the resonance Uh\, .

B(np) = | dg 59T o

1}

. | :
25 Re By Thp (5431
Doy BY By

The formula (5.31) is very similar to the one obtained by

~ Babes and Dalgarno (1962) .

S5-4 Principal quantum number representation

In b=% we developed 5{1(, in function of the energy now we

develop y in formula (3.30) , in function of ¥ . The

E-N.-ig

integral from -0 to 400 , for E , is from VY, to Vo+d 4
Using the same method introduced in 5-3 we expand E

oround (L + 1€

E-N -le

e L (vevg =tE) (5.32)
SES -
with
+ \ | - VoV
0N - E 2T Tm E-fL = o (5.33)
2V ‘\)%‘,
and.
Va

with E >© (since €50)
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Let's define

2 (M +.LE) . |
IX’_O_E 7: Q. - : (5435)

Then from (5.%2) we obtain

Y
4 A 2 9ve Y X/.S‘LE (5436)
E-Su-le  p2omiv _ X’-ﬂ-};

We can check this formula knowing that the integral of the
left hand side of (5.36) is

Jawm S A E = iw (5.37)
& -0 E’:__ﬂ__,fe
for the right hand side it gives
Vot 4 .
dv 2fsri,u3%:;_g _ ar Yy -0 (5+38)
3 oA - -
, Vet oKy 2 (2-Uypy )

Therefore (5.36) is not correct .
Jm\\)
We shall improve (5.%6) using the approximation %IL —

when VY +V, and we can take :
o v vV 00 )
| ey e + ok
~ " g‘) (5439)
E-N.~\€ QA -%ﬂg
This formula agrees with (5.37) . Also the right hand side is

enbisymmetricel in e&mv and. %St}é, 28 the left hand side in E
and L. +4€& .
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. e . . )
We write 3/& () using the matrix notation

. -4
HE(E) = L v S -an E> (% fhw) Yo C (5.40)
is given by
\ ) :
P - Af-’ Q) ?‘é (5.41)

If we compare (5.41) and (5.21) we see that BP is the

P

column number p of P . B is a (2,3)-matrix .

i ad

Using (5.39) we have

X T
z-(E\ = X \-’3&“( A %cc\ ( -2 f~7("c,c.,, % (5.42)
o £y i

Applying (4.45) to (5.,42) we reobbain (3.37) i.e. :

Z(e) +27(E) = 2x*A"H

This is another check that (5439) is correct «

The nexb stage ig to reduce :

e) ~LTTY v = .
é(?c \)‘— % LT\' /2’(14-.5‘\) B(J:ﬂ\ u) (Q?:ﬁw ,X'M’ E)) E)(xmv& l.mv) %

(5.43)

o

by incorperating (5.25) and defining

A - D §T§ (5ot4)

cC “5



We have

ALped , =3V 3 N N -4y ol
Q B \E;( ¢ v &( ¢ (.,c\) (d"’i’{%m‘} 2{7(»} (543)

-
[N

where

. -4 _
Gt.cv = (4'+ ;A,;cf,.) ‘),é'?cc_ (/_L... ég‘;) - (5.46)

In general @M has not the same eigenvalues as ‘X/Zc . The

matrix éc,c. produces a shift in the positions of the resonances.
For comparing this new result to the former one (5.28)

we shall do The same hypothesis : i.e. the resonances don't

overlap‘,

For %  around \-’.ﬂ‘, :

1
W . B, E’f‘ [ Xp| e (5447)
P ‘4“3—\2'1 o (%’F{? WQQ,'WW’ )(%?ﬁ)"—' e-—'l‘ﬁ’fm’)
Then
- 23w )
Z(E): X ‘v?’ﬁbf%t ( + Kep 48
e .2,-: A P ) 25‘:\ y X " ( 5 L )
(5 %)

and



iy

(pe) ‘
é\’ 3 {9:;‘(’ ki v% N va ' g ) /L-\»AP) %\3[ (5.49)
where
) +
. 5L R.B .50
AT = 5 v P 2p (5.50)
3 ‘ P
A? is a single element mabtrix as @r
) -4 2 ) |
- 4 - 56541
. (¢+AF) %Fr(i AF) (5451)
Now using (4.61) we obtain
| +
. Yy .9, .
B(wp) = 2= [Xul “r Bp (5.52)
T oamviel B, + 1, 1 (4 V¥ "
ATYTRe Bp T e 4% ~ -
Inserting (4.62) and (5.17) the final result is deduced
2 15*'3
w
E(Y\l&) +r ?(“L - 3&*& )ZL (5055)
F] _""'"-\“ A
ot 8¢ Prp (4~ Bely
Tf we compare (5.53) and (5.31) we see that they are identical
except for the term -T W R + .
2 MP%

5=5 Gommentary on the formulae obtained

The problem is to choose bebween (5.31) and (5.53)
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If we consider the case where the resonances are flabt ( \%P‘\L:‘.L)

and do an average inﬁegration over ¥V we obbtain from (5431)

.\,
gy’ Bp By

)
| sPOtsEm| s

= 3 (554)
4+ 2y %F§F -
Now let's do the same for (5.5%)
ot gtpop® A Bt Br e
K| SOT PO 5 2 . e (5.55)
(4+ZviepRe) |

When the resonences are flab there is no demping due to the
resonances and we can compare the formulae (5.54) and (5.55)
to the case where there is no resonance (Davies and Seaton

formuls (6,16))

b
4.+ T(E
(t+2 n(E))

where
re) = 2w IFK() I(e) (5.57)

We can therefore deduce that (5.53) is a better approximation

than (5.31) .
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For dielectronic recombination, the effect of using (5.53)
instead of (5.31) appears for V large. For Het + e~ t#his
effect is negligible since it appears for ‘93 > lo” and at
this point the dielectronic recombination is already small .

But for more fonised sysbtem it can decrease considerably the

dielectronic recombination rate .

EEEE SRR EEEEEFEEE LSS ES]
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CHAPTER VI

Caleulation of the complex quantum defect for He' + o

G=1 'Introduction

In chépter V the electron capture probability was
exbressed in function of two quantities VL? and £§? which
were themselves function of the complex guantum defect ki? |
and of the diagonalisation mabrices gz- and Zg « All these
lagt quantities are tabulsbed in this chapter . They are
obtained by a computation method deduced from chapter IV theory.

In this chapter we also check the validit& of the method
used by comparing the complex quantum defect to the values
obtained by solving directly the equpled equations, employing
the method developped 5y Norcross and Seabton (1970) . For
completing the test we also built a programme using Bely's
method (1965 a,b and 1966) .

We shall begin by giving some commentaries on this last
test .

G=2 Bely's programme

Before: developping chapter IV theory we thought possible

%o use Noreross and Sealbion' methed (1970) =o as to extrapolate
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the complex quantum defect « But as will be shown in G-
(Figures 6*1 to 6*5) with this epproximation any extrapolation
of the complex quantum defeet from above the threshold is
unreliable . But on figures 6*1 to 6*5 an interesting feature
appears : under the threshold the complex quantum defect is
slowly varying with energy andrseems to converge to the wvalue
obtained at the threshold . However we ean't have any cerbainty
sinee just under the threshold sn unknown gap can't be reached
by solving numericelly the coupled equations .

 We built Bely's programme (1965 a,b and 1966) to check ,
for He* + o~ » that the failure of Noreross and Seaton's method
was really due to the difference of approximation . The direct
comparaison of the asymptotic forms obtained by solving the
coupled equations and the corresﬁonding resulte deduced by
extrapolation from above the threshold using Bely's programme
was very good , showing a great improvement .

However Bely's programme didn't solve our problem
First 4 it didn't give the complex guanbtum defect .
Second , it dida't fill the unknown gap due to some divergent
functions used by the method .
Third , it wag numerically very unstable depending on the
computer word length .This point vas already mentionnad by Bely
- (1966) : " The calculations are very sensitive to numerical
inaccuracies Y . |
For going out of this cul de sac we tried to improve Bely's

method so as to suppress the divergent functions and the causes
of the inaccuracies . We found that for some 9% the analytic

functions 31 , 32) ( and 36 , \j_? in Bely's mnotations)
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were not numerically independant when the word length was small .
We defined new analytic functions giving less trouble . At the
place of dz we took

R R EIUD TR A

Ve 1y
that converged to é54 for tending to an inbteger . These new

functions improved the stability but increased the complexity
of Tthe programﬁe already difficult to ubtilise . Also the number
of possible new definitions being infinite the physical validity
of ahy choice became problematicel , We had to find a criteria .
Following Eissner et al. (1969) Seaton (1969 a ) and
Norcross and Seaton (1970) we decided to abandon the analytic
functions for the slowly varying functions . For 0\ =0 the
regular and irregular Coulomb function are slowly varying with
energy .'They are also in phase guadrature and they have physi-
cal propérties in the Coulomb-Borm Approximation . For M\ ¢:Q

D

-

function .

and ¢° are the nabural prolongation of the Coulomb
Bely's programme has been kepl for comparaison .

6=3 Chapber IV theory prograumme

For avoiding to compute many times the same quantities

we built two programmes ( for IBM 360 ) .

Programme I

INPUT : all the total angular momenta [ corresponding to the

partial waves considered ( in practice : Lz 0, --~-,40 )



~T7R -

MAIN : reads the input and calls two subroutines AMAT ',_ EIGEN .
It prints and punchéthe A and 9 (see (4.6))
AMAT : from the target radial functions and the angular momenta

| it calculabes ﬁ defined by (4;5) . For HeT 4+ e~ we

have
"Q-\ (.tt‘\‘ l) 0 0 o
N o ) alm  -Mh
= . T"" Ve +1 Vagei
’ %2’:’;:!:; @) 0 (-1
) 3Ty 0 Jz,ﬂ(ﬁi-»a)
VAT |

EIGEN : it calculates the diagonal matrix o and the orthogo-
‘nal matrizx O  (o=A, and ‘D;“o ~ excepted O, =4 ) .

EIGEN is derived from CEIGEN (see Programme II ) .

Programme I1

NPT :
a: L s & | g
b s number of energies from which the extrapolation is
done : N1 , and number of energies to which the extra-
polated results will be calculated : N )
c: energies corresponding to N amd NL & EL(L) ,E‘ia(é.)
a : B/ matrices obtained from the coupled equations
programme and corresponding to : L , EL(1)
e ¢ de@ree- of #he polymonial fitting + 1 : N . If

- the value' is zero the programm takes N - N .
MAIN : the inputs sre Tesd snd the four mein subroutine are

called : RTORP , ANALYT , RPTOR , RESON .
RTORP : it does the transﬁorma'bicin fron E, to A . The

A
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elements required for this transformation are computed in PHT .
ANATYT : knowing the .ﬁ -natrises ‘corresponding to L, E‘l('\,)
it obtains the coefficient matrices of the polymonial expansion

of degree N-4 .

" . . "'4_
,8 - j\’i +_.82E d - ﬁN EN (6.2)

~ o~

Depending cn N the subroutine uses different methodse

For N = N1 it uses the direet fitting obbtained by inversing the

matrix
| 4 B, EY ... E‘iii
% L4 :
D - 4 E, Ey -~ - &L (6.3)

L

- e L . o

4 ENa. Eda Eng

For N < Ni it uses the least square polymonial fitbting

(1g N <nNd ) . The problem reduces to a matrlx :L_nversion a8
in the first .case . For NzN{the second method is identical to
the first . The subroutine calls INV . |
RPIOR : from the matrices g, eeveees oI it rebuilts the

ﬂ -matrix Lor the reqﬁiired energy . Then by calling PHI it
~ transforms ﬁ into. B. oxr % (see  (2.26)) it prints the
natrix obtaiﬁed o | 7
RESON : it obtains from the \ﬁ matrix the resonance structure
matrices X, 4 %éc_ and X . For diagonalising ¥, the program-
me calls CEIGEN .All the quantlb:l.es o‘bta:l.ned are prlnt 1nclud,ed.
the .Q; matrix defined by : .Q.L} {0 X)w\

The complex quantum defect EF"'%\’P and the elements .ﬂ_'w are
tabulated on table 6% to 6*a5 .

PHI : knowing O, and £ it deduces X (ayeMi(d+) ) and the
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é;’for each,channel . Then for € 0 from (2.17) (4.23) (4o24)
and. (4.27) it obtains the two phases differences that are necess
sary for doing the transformation from g to ‘& (and vice=-
%ersa ) (see Appeﬁdix 3) . For €,<0© from (4.20) it obtains the
expangion coefficients on the convergent and divergent asymptotic
functions (by eliminating the divergent part<§§ is deduced iﬁ
RPTOR ). PHI calls GAMC . _

GAMGC : it gives the modulus and argument of M%) when B is
comglex . The method used is classical : for Re(R) Llo it uses
the canonical relation P(%)eg M2-1) g0 that to express M{%) in
~function of T{Z+n) " where Re(zrn)z\o o Then M(Ren) is evaluated
by The Stirling formula :

X XL v | |
Mxyze™ x L(m)’/‘*‘-ld,l,\,__‘m P < I A I (644)
- WY 288XY 51340%3  248R320%*
We checked GAMC by reprducing all the tables given by Abramowitz
and Stegun (1965) . The agreement is over all the tabulated digits

We also checked meny obher cases using for comparaison the formule

PO r(-xy = T ' (645)
< Sin (arx)
The agreement was very good . ,
CEIGEN : This programme was made by Seaton (1969 b ) . It is a
programme of diagonalisation of symmetric complex matrix .

INV : classical programme of mabtrix inversion.

6=4 Conmparaison with Norcross and Seaton's method
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Worcross and Seaton's method (1970) contains the‘hypothesis

(see formula (4.%))
U}QQ (_\'\) = 0 ' ’?‘9“ ey (6.6)

Henece there is no need of a first diagonalisation ( Oz 4 )

The diagonal elements C&L nore
o= | . (6:7)

By following the same method as in chapter IV they obtain the
)
X matrix and the X e matrix « The complex quantum defect is

defined similsrly .
Under the threshold it is possible to f£it the &f,, clement
to the profile formula (see (4.43))

A R . )
: )
R
- 1
from which is deduced pp: ¥\, = S A

Norcross and Seaton used a different fitting :

EIEY
‘Q&M = L 1 |
. L, (649)
5}_ - &+ Zi. kmmﬁ _3;__,m,
v Ep-E

The proTile parameters were estimated by considering few energies

over the resonances where the coupled equations were solved .
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From Eg\ they deduced d‘v‘ :

E_ - EF - A  (6.10)
YO

and the complex quanbum defect. \f‘n = d\p*’“‘ (\3\":

(n-d‘,\)i - ]:(\/\wkr\lér %9;:\1/[(“”“”1_%2‘:]1
2
™ - 4 ("‘"‘*r)%r/tch”"{bt"’ %%]

(6.11)
r\

We compared the two former methods . The results obtained were
practically identical .
On figures 6*1 tc ©*5 we plot the results obtained . Unde:
the threéhold the fitting method was used . Above the threshold
(++4+4+ 3 0 00o0) were obtained using Noreross and Seaton's

method and ( y = = =) using chapter IV theory .

The comparaison of the results shows that an extrapolation
from Norcross and Seaton's results is not good but from chapter
IV theory it is very sabtisfactory except for the imginary part

_ LG ule '
of the complex quantum defect for the last tmhie . This imaginary

part being very small it is possible that some numerical inacecu~

racies have produced the strange curve .

dkw kR Rk Rk sk sk kok ok %
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CHAPTER VII

Calculation of the dielectronic recombination rate

For obbtaining the dielectronic recombination we have to
choose some energy probability digtribution for the l_colliding
electron - It is usually counsidered that it is a Maxwell distri-
bution . Then we can deduce thet for He® + ¢~ the dielectronic
recombination is important for a temperature sround | A \oc5 °l< .

The dielectronic recombination d'epends also of Tthe elec-
tron densibty . When this density increasges The ionizabion of the
high excited states of He decreases the recombinabion probability
Burgess and Summers evaluabted that for wa\og’ém"a-bhis lonization

effect is still very small . |

7= Formﬁl_ation of the problem

Tett's consider an electron having a velocity U and
forming with Hej’(\ﬂ a system having the guantum numbers . , S
The capbture cross section T o that the former system is captured
into the "states" ’\S(\?{H)&F or 45(\#'2-\)2% is (using (5.30) or
(5.49)) 3 |
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¥
o/ = X, (i) {2u) {as+) (7.1)

2T \ my

6(?&)
s

2wV is the statistical weight of the initial state :

Het( 48 ) + e o« ( 2wt 4 )

The Maxwell distribution density is

% ™

\ CI LS

f(v) = axe¥ [ N e ek o2

(7+2)
2%T

“Q% is the Maxwell Boltzmenn comstant . | is the temperature

-?(\Y } is a normalised density :

Q(U') av = A

(7+3)
The dielectronic recombination rate into 4g w041 | is
by definition
d\d (\'\e'_‘:\) - Z:, qmt(rnkb) g &(u’) AJ (7:4)

¢

The symbol W represents the summation on b consecutive
regonances i.e., summation over the resonances having the same

principal quantum number W o

Z
This gives using the energy relation B myJ
2
Vz Ja/ _ E .
Ly (wer) = 2 (1) (,.1_..)?“2_ riWg % g (7Y
e e T ?
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The resonauce P being very narrow we can consider thatb

E - .
e~ %T is practically constant over the resonance .

EﬁEh\;
| (7.6)

o I
Eh\, = EQP - 2\);3%

In the purpose to obtain a formula independant of the

unit system we have to.transform (5.%1) and (5.53) as follow :

gt (hs) [\ (L6)

RH(np) ¢ 2P Tr Do
:  LRS) Bu.s) (u8) .
Be Br e Ay (7.7)
P*(npy = an By mpd A

(b8)4 o ELS) LSy o ad g9t sy
Fo B Ay (- e e R

and define the autoionisation probability by

(Ls) (ws)
A h‘r - __E::‘.E.—w - (758)
.

Hence

E
3, .
Q{d(h%‘)t(lwo(zs*ﬂ *n Y e kTP (np) (7.9
2w¥ (kT ) P |

This formula is similar to the one obtained by Bates and Dalgarno

7-2 Resulbs
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'Te.m\waﬁ"um T = LSovee © K
g (n) '0{1& (n)
nzlo 5.566 -4 5508 ~\¢ |
< 2o 2.56% ~14 24569 -4 B
= So_ & 0% ~ 15 4,11 ~ 1%
n = loo BB -6 8.353 16 |
=~ tSe 2,607 =16 Dgé.‘?%-»ie;
h= 200 TR T 148 =16
_MMamfa9WMMﬁ oo | vasaee
| n=load 9329 -19 341419
Msdess | BuAsS-2o | 1ST1-2
h= Swoo 7 4612 9. ae.L-»&:a
2o 4.4382 -1 4.487 1
74 Dididrounic rtcomdsivuation tutes

tiz\(v\) ;0{1‘((\‘\) Mfféﬂ\ahch,mgv o

P (np)

PUwp)
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In the purpose to be able to compare the following
results to those of Shore (1969) and Burgess and Summers (1969)
we shall define equivalent quantities that we shall plob .

Corresponding to the formula (38) of Shore we define :

(-8} 4 (L.s) A(\A)

be(a) = (ke 7 (ase) 2 28 w o (710)
ot A 3 m) m).ts (e8)
Atﬂ is relaked to -Br. BP by :
Z [?)Lus)%- (L‘;) ~ ‘g Ar‘ (7.91)

where —(l'::fl for L=0

‘(; 3, for L+o
The left and right hand side are nearly equal for X is nearly

A

unitary . ( see (4.60))
Burgess and Summers and Shore plot v?o( k\) -2

bn) = 2; L{wL) (7.12)

On. :E.‘iguré 7*1 we give our regults for *%(V\ L) for W= L
to 7 » On figure 7*2 we plot %(\'\3 obtained by our method and by
Shore . On figure 7*3 we give b(d (n)

dgln) = 2. RAglwme+4) (7.93)
1S

We also computed b{d(\«\\ using the "overlap correction" developped
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in 5-1 ., The correction is very small and is not large enough
to be significant . |

We did some compubations replacing Fi(\q{) by Pl('v\%)
into (7.9) . The results become different only for Y larée ,
as expected , We give some results in table 7*4 corresponding
to the temperature V- LSvovs K,

On figure 7*5 we compare the btotal recombination rate.
A ' = ¥, (n,T 7, %
Eﬂk (;T ) f %&- ,d ( } ) (70 )

with Burgess' results (1964) , Burgess also included the
recombination from M =3, sivee.. . This conbribution is of
the order of 10 % of the recombination from " = 2 whereas
. the: difference between our results and those of Burgess is

significantly larger than this correction ,

LEEEEETELEEEEESEERE S
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CHAPTER VIIT

Conclusion

In the earlier chapters we gave a theory as well as a
nethod for computing the dielectronic recombination quantities
in the case where there is a strong coupling hétwean the
degenerate closed chammels. , In the case where we should have
non degenerate target states the method could be simplified for
we: should not need any diagonalisation for the. asymptotic
potential ,

The results obtained for He' are in between those off
Burgess and Shore . We think that Burgess ovevevaluated the -
autoionisation probabilities using the. Bethe Approximation and
Shore under estimated by neglecting some "small integrals" and
the interaction probabilities between closed chennels ( confi-

guration interaction between resonances ) ,

LEEREE R EE TS EE RS
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Appendix 1

study of A(€,Q)

A(e ) is defined by (4+14) « For 5 =1 it is possible
to express D(K+e1) and T(k-)} in function of T (K.) using

© the canonical relation

Dxxm) = x T(x) ( A1)

and e obtain the polynom

L
>3
Ale,t) = IU (L4ep®) (12)
\“:.0
We are only interested by a very small energy region , just
above and under the threshold . We can consider only the first

order of ‘the polynoms :

for Q-0 A-CQ,D):':L
for =4 A(epi):"iﬁ’ﬁ
for -9 A(e, L) ~ 4% SE

Tt is logical to think that for Xz \.& , for exemple ,
A(E,1.6) x4 4+d€  where 1< A < 5 .

We checked this idea by building a programme for compubing
Aed) for )\ real and :)\:H%A-‘iﬁ . On figure A*1 we give
the results obtained for 3\=0.i,4.6.3.-,9..23‘”7 . We see that for
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€ between = 0,02 and + 0,02

Ale 2} ~ 4 + (D) & ( 43)

We also give the immaginary part or A€ 9\) for A=~ ‘? Ma\a
A =0, 09963, 4.3829, The real part follows also the same pabtern
We deduce that ( A% ) is also valid for [ complex .
On a larger energy scale A{€ ) keeps good properties
and we can deduce that A(e ﬁ\) is slowly varying .

sk e A o ok ok ok ok R
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Aopendix 2

Study of K (v N

K{¥.4) is defined by (4.17) . We saw in formula (4.18)
that K(¥,2) was real and positive for any A\ weal or

9\--—.. 4% o Now for N=! using the formula ( A1 ) we have
| “
VW eler) oo e (W) =
T Y
‘“‘(V)v% (Vi) (V) oo o= (Wt) ( )

That gives at the first order

for d=o kK{v,o) = 4-/!“ \J\v%

for d«<| K{vA) e (4 - \r"!)/ Ply) v
for K< K(v,2) &~ (A-afia)/ \“‘(v)v/&

{
¥
In +the purpose to make dissapear the behaviocur in \h&l we

shall use a gusdratic scale . On a similer way to Appendix 1
we built a progrémme for R(u,m . On figure 4*3 we see thatb
for any & real or {}\1.‘.%%5 |~<[¢'Q) ig at the first order :

kKiva) o Lo (14 playia (25 )
riv) v ( ‘S )

A e ok g ok o ok ok sk ok sk
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Appendix 3

The 4 matrix is real and Symmetrié

We are considering the transformation from K %o ﬁ .

Fa ol

F( % ‘(\') A { A+ C %’ % (A6 )
where A = - Awm(x) | o = - ee (%)
Ve Vi

X is defined in (2.17).
For the three degenerate channels let's define one coulomb

phese only il.¢e.

’ ( A7 )
A‘i - A:L , L= €y Qar‘ v 2,%,4
- Then we define
- ) | '
y(g"p),ﬁ,%/&_»c)R (a8)
We have
Az 4 ey 4 ¢ dun
(. A9 )
¢ 2 Comy — A Avayp
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¢ is the phase difference

E‘ = {4y 4wy R )(wry - amy R )‘d’ ( 410 )

ey )
Let's prove that K is symmetric

P

T

R. I~ R, |
- . . ( A11 )
. R‘T(Q\%Lf + Ain k{)) = (‘Cmtxf) “F'/Q‘M\%?}E:
| This gives
T v | _ "’l—‘ - 3 T 1.
;p:mLf—yémkeﬁmm\?%“iiAmx? ¢ 12 )
ing to i _ RrR'Y V ¢ R
By adding to each side Ay oy~ 1S Gy Ay G

we obtain
(i *STO%\?)(W\%“fS‘W‘?‘E'\) = (g & dong ) (BoprimtR) o
Finally we hav_'e

N | -4
eonp - ﬁTAlw\'Q‘(mv\q Bl Y= (anmpruny R )(eanp- Ay RY ™

(a4 )

i

)T ‘ >
R - R
P LN
o . ' .
Due to the properties of A and ¢’ O commute with

thern
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We define
6 (Rv) =0 E(Ry
we have
\ T oy ]
%(%\V‘)N(A‘Q + ¢ Q R) ( 416 )
We have also to Qefine
G2\ ) ~ w9 ( 417 )
we- obtain
‘iﬁ): QT;%)Q ( A18 ) -
by consequence we have
Sﬁ)-r =3 53; ( 419 ) .

e s

Between .A*', ¥ and. ﬂé) . Q) theve is aphase difference
as between 4 y G and A ’ Q’ . We can deduce
' ) _
that S is symmebric because S is symmetric . S is
. s s~

also real because all the transformations used were real .

EEE S EREEREEEEEELEE]
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