Modelling rapidly rotating stars

Daniel Reese

August 21, 2007

HELAS II, Göttingen Helioseismology, Asteroseismology and MHD Connections

Introduction

Stellar structure Pulsation modes Outlook

Introduction

Introduction

Stellar structure Pulsation modes Outlook

Introduction

this has caught the attention of those doing stellar models:

Models for Achernar (Jackson et al., 2004)

イロト イヨト イヨト イヨト

this has caught the attention of those doing stellar models:

Models for Achernar (Jackson et al., 2004)

What is	inv	olved		
when	m	making		
models	of	such		
stars?				

イロト イヨト イヨト イヨト

Outlook

Introduction

Stellar structure

Physical phenomena Recent models

Pulsation modes

The frequency spectrum Mode geometry Ray dynamics

Outlook

イロン イヨン イヨン イヨン

Physical phenomena Recent models

Physical phenomena

Daniel Reese Modelling rapidly rotating stars

Physical phenomena Recent models

Physical phenomena

centrifugal deformation

(MacGregor et al., 2007)

<ロ> <同> <同> <同> < 同>

- < ≣ →

Physical phenomena Recent models

Physical phenomena

- centrifugal deformation
- gravitational darkening

・ロト ・回ト ・ヨト

< ≣⇒

(MacGregor et al., 2007)

Physical phenomena Recent models

Physical phenomena

- centrifugal deformation
- gravitational darkening
- baroclinicity

・ロト ・回ト ・ヨト

< ≣⇒

(MacGregor et al., 2007)

Physical phenomena Recent models

Physical phenomena

- centrifugal deformation
- gravitational darkening
- baroclinicity
 - differential rotation
 - meridional circulation

(MacGregor et al., 2007)

<ロ> <同> <同> <同> < 同>

< ≣ >

Altair *i*=63.9

Physical phenomena Recent models

Physical phenomena

- centrifugal deformation
- gravitational darkening
- baroclinicity
 - differential rotation
 - meridional circulation
- transport processes

(MacGregor et al., 2007)

<ロ> <同> <同> <同> < 同>

< ≣ >

Altair *i*=63.9

Physical phenomena Recent models

Recent models

Meynet & Maeder (2000), and other papers

- shellular rotation profile, $\Omega(r)$ (see Zahn, 1992)
- 1D formalisme
- stellar evolution
- transport processes (chemical elements and angular momentum)

Jackson et al. (2004, 2005), MacGregor et al. (2007)

- barotropic models
- conservative rotation profile: $\Omega(s)$
- attempt to describe Achernar

(MacGregor et al., 2007)

イロト イポト イヨト イヨト

- Roxburgh (2004)
 - barotropic uniformly rotating model
- Roxburgh (2006)
 - transforms 1D models into 2D models
 - arbitrary 2D rotation profile
 - thermal equilibrium not solved

Physical phenomena Recent models

The ESTER project

- Rieutord (2006)
 - boussinesq model with baroclinic flows
- Espinosa & Rieutord (2007)
 - compressible baroclinic model in spherical container

Image: A math a math

The frequency spectrum Mode geometry Ray dynamics

Pulsation modes

many uncertainties remain in models

need for observational constraints

・ロン ・回と ・ヨン・

The frequency spectrum Mode geometry Ray dynamics

Pulsation modes

- many uncertainties remain in models
 - need for observational constraints
- difficulties
 - pulsation modes are not given by a single spherical harmonic: this is a 2D eigenvalue problem
 - unfamiliar mode geometry and frequency spectrum

イロト イヨト イヨト イヨト

The frequency spectrum Mode geometry Ray dynamics

The frequency spectrum

Inadequacy of perturbative methods at rapid rotation rates

イロン イヨン イヨン イヨン

The frequency spectrum Mode geometry Ray dynamics

The frequency spectrum

Inadequacy of perturbative methods at rapid rotation rates

Image: A math the second se

< E

The frequency spectrum Mode geometry Ray dynamics

The frequency spectrum

Inadequacy of perturbative methods at rapid rotation rates

・ロト ・回ト ・ヨト

- 🔹 🖻

The frequency spectrum Mode geometry Ray dynamics

A new frequency organisation

(Lignieres et al., 2006, Reese et al., in preparation)

$$\omega_{n,\ell,m} = n\Delta_n + \ell\Delta_\ell + |m|\Delta_m + \alpha^{\pm}$$

э

The frequency spectrum Mode geometry Ray dynamics

Mode geometry

mode energy concentrated around equatorial region

The frequency spectrum Mode geometry Ray dynamics

Mode geometry

- mode energy concentrated around equatorial region
- there are 10 "radial" nodes ($\tilde{n} = 10$)

・ロト ・回ト ・ヨト

-≣->

The frequency spectrum Mode geometry Ray dynamics

Mode geometry

- mode energy concentrated around equatorial region
- there are 10 "radial" nodes ($\tilde{n} = 10$)
- there is 1 "latitudinal" node $(\tilde{\ell} = 1)$

Image: A math a math

The frequency spectrum Mode geometry Ray dynamics

<ロ> (四) (四) (三) (三) (三) (三)

The frequency spectrum Mode geometry Ray dynamics

$$\tilde{n}=10, \quad \tilde{\ell}=0$$

< □ > < □ > < □ > < □ > < □ > < □ > = □

The frequency spectrum Mode geometry Ray dynamics

▲□→ ▲圖→ ▲園→ ▲園→

The frequency spectrum Mode geometry Ray dynamics

・ロン ・回 と ・ ヨ と ・ ヨ と

The frequency spectrum Mode geometry Ray dynamics

$$\tilde{n} = 11, \quad \tilde{\ell} = 2$$

・ロト ・回 ト ・ヨト ・ヨト

The frequency spectrum Mode geometry Ray dynamics

$$\tilde{n} = 11, \quad \tilde{\ell} = 3$$

・ロト ・回 ト ・ヨト ・ヨト

Question: what is the link between this mode geometry and the geometry of modes in non-rotating stars?

Question: what is the link between this mode geometry and the geometry of modes in non-rotating stars?

$$\begin{split} \tilde{n} &= 2n + \varepsilon, \\ \tilde{\ell} &= \frac{\ell - |m| - \varepsilon}{2}, \\ \varepsilon &\equiv \ell + m \, [2] \end{split}$$

 $\omega_{n,\ell,m} = \tilde{n}\tilde{\Delta}_n + \tilde{\ell}\tilde{\Delta}_\ell + |m|\tilde{\Delta}_m + \tilde{\alpha}$

The frequency spectrum Mode geometry Ray dynamics

Ray dynamics

Question: what is the link with ray dynamics?

(Vidal, 2006)

(Lignières & Georgeot, submitted)

- A Poincaré section reveals:
 - different regions with different behaviours
 - the presence of wave chaos

The frequency spectrum Mode geometry Ray dynamics

- Husimi functions can be used to "project" eigenmodes onto Poincaré section
- this confirms correspondance between ray dynamics and eigenmode calculations
- ▶ likely link between wave travel times and parameters Δ̃_n, Δ̃_ℓ, and Δ̃_m

イロト イヨト イヨト イヨト

Outlook

 few attempts to interpret pulsation modes in rapidly rotating stars

SLAIS		
Authors	Star	v · sin <i>i</i>
Aerts et al., 2006	HD 2036645	180
Dziembowski et al., 2007,	HD 163868	250
Savonije, 2007		
Suárez et al., 2005	Altaïr	230
Saio et al., 2007	ζ Oph	380

- difficulty with obtaining a reliable mode identification
- forthcoming data on other rapid rotators (HD 181555, observed by CoRoT)

・ロト ・回ト ・ヨト ・ヨト

What needs to be done:

- search for asymptotic patterns using realistic stellar models
- search for equidistant patterns in observed pulsation spectra
- improve stellar models
- b do detailled asteroseismic comparisons

Image: A matrix

E 🖌 🖌 E 🕨