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Introduction
L48 A. Domiciano de Souza et al.: The spinning-top Be star Achernar from VLTI-VINCI

Fig. 1. VLTI ground baselines for Achernar observations and their
corresponding projections onto the sky at different observing times.
Left: Aerial view of VLTI ground baselines for the two pairs of 40 cm
siderostats used for Achernar observations. Color magenta represents
the 66 m (E0-G1; azimuth 147◦, counted from North to East) and
green the 140 m (B3-M0; 58◦). Right: Corresponding baseline pro-
jections onto the sky (Bproj) as seen from the star. Note the very effi-
cient Earth-rotation synthesis resulting in a nearly complete coverage
in azimuth angles.

detection of stellar asymmetries. Moreover, Earth-rotation has
produced an efficient baseline synthesis effect (Fig. 1, right).
A total of more than 20 000 interferograms were recorded on
Achernar, and approximately as many on its calibrators, cor-
responding to more than 20 hours of integration. From these
data, we obtained 60 individual V2 estimates, at an effective
wavelength of λeff = 2.175 ± 0.003 µm.

3. Results
The determination of the shape of Achernar from our set of V2

is not a straightforward task so that some prior assumptions
need to be made in order to construct an initial solution for
our observations. A convenient first approximation is to de-
rive from each V2 an equivalent uniform disc (UD) angu-
lar diameter �UD from the relation V2 = |2J1(z)/z|2. Here,
z = π �UD (α) Bproj (α) λ−1

eff , J1 is the Bessel function of the
first kind and of first order, and α is the azimuth angle of Bproj
at different observing times due to Earth-rotation. The appli-
cation of this simple procedure reveals the extremely oblate
shape of Achernar from the distribution of �UD(α) on an el-
lipse (Fig. 2). Since α, Bproj(α), and λeff are known much bet-
ter than 1%, the measured errors in V2 are associated only to
the uncertainties in �UD. We performed a non-linear regres-
sion fit using the equation of an ellipse in polar coordinates.
Although this equation can be linearized in Cartesian coor-
dinates, such a procedure was preferred to preserve the orig-
inal, and supposedly Gaussian, residuals distribution as well
as to correctly determine the parameters and their expected
errors. We find a major axis 2a = 2.53 ± 0.06 milliarcsec
(mas), a minor axis 2b = 1.62 ± 0.01 mas, and a minor-
axis orientation α0 = 39◦ ± 1◦. Note that the correspond-
ing ratio 2a/2b = 1.56 ± 0.05 determines the equivalent star

Fig. 2. Fit of an ellipse over the observed squared visibilities V2 trans-
lated to equivalent uniform disc angular diameters. Each V2 is plotted
together with its symmetrical value in azimuth. Magenta points are
for the 66 m baseline and green points are for the 140 m baseline.
The fitted ellipse results in major axis 2a = 2.53 ± 0.06 milliarcsec,
minor axis 2b = 1.62 ± 0.01 milliarcsec, and minor axis orientation
α0 = 39◦±1◦ (from North to East). The points distribution reveals an
extremely oblate shape with a ratio 2a/2b = 1.56 ± 0.05.

oblateness only in a first-order UD approximation. To interpret
our data in terms of physical parameters of Achernar, a consis-
tent scenario must be tailored from its basic known properties,
so that we can safely establish the conditions where a coherent
model can be built and discussed.

4. Discussion
Achernar’s pronounced apparent asymmetry obtained in this
first approximation, together with the fact that it is a Be star,
raises the question of whether we observe the stellar photo-
sphere with or without an additional contribution from a CSE.

For example, a flattened envelope in the equatorial plane
would increase the apparent oblateness of the star if it were
to introduce a significant infrared (IR) excess with respect
to the photospheric continuum. Theoretical models (Poeckert
& Marlborough 1978) predict a rather low CSE contribution
in the K band especially for a star tilted at higher inclina-
tions, which should be our case as discussed below. Indeed,
Yudin (2001) reported a near IR excess (difference between
observed and standard color indices in visible and L band
centered at 3.6 µm) to be E(V − L) = 0.m2, with the same
level of uncertainty. Moreover, this author reports a zero in-
trinsic polarization (p∗). These values are significantly smaller
than mean values for Be stars earlier than B3 (E(V − L) >
0.m5 and p∗ > 0.6%), meaning that the Achernar’s CSE is
weaker than in other known Be stars. Further, an intermediate

Achernar
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I centrifugal deformation

I gravitational darkening
I baroclinicity

• differential rotation
• meridional circulation

I transport processes

(MacGregor et al., 2007)

envelopes are unambigiously in either one of those states or the
other, the classical results apply under rather different circum-
stances, which we discuss next.

Both the von Zeipel (1924) and Lucy (1967) results treat rota-
tion as a perturbation. However, in the radiative case in which
uniform rotation is adequate (and issues like mass loss, etc. can
be ignored), the quantity treated as a perturbation is the size of
the quadrapole moment of the gravitational field. Since stars are
centrally condensed, even for velocities approaching critical the
distortions in the core are modest, one can expect that the analy-
sis given by von Zeipel (1924) will be reasonably accurate. This
has been found to be true in practice (Sackmann 1970).

For the convective case, the gravity darkening exponent is ob-
tained by analyzing the adiabats found in the envelopes of rep-
resentative stars. Lucy (1967) quite explicitly points out that the
derivation is valid only for small changes in the effective gravity.

Of course, the effective gravity changes by orders of magnitude
as rotation approaches critical, and it is not clear whether the
exponent derived by Lucy can be used to describe gravity dark-
ening for anything but the most modest rotation. Again, this is in
contrast to the modest contribution of an induced gravitational
quadrapole, even for stars rotating at breakup.
Even so, in a recent series of papers, Claret (2004 and refer-

ences therein) has attempted to deal with the issue of a smooth
interpolation between these two extreme cases. He has noted that
as stars evolve off the main sequence and toward the red giant
branch, their interior structures trace out approximately straight
line loci in a ( log TeA; log g) diagram. On the main sequence for
massive (mostly radiative) stars, the slope of this line is about
0.25, and for intermediate-mass stars (�1 M�, mostly convec-
tive) the slope is about 0.06, the two values being remarkably
close to the radiative and convective exponents cited above.

Fig. 3.—False-color rendering of Altair’s visible surface. Intensity at 500 nm increases from red to blue. Except for the effects of limb darkening, this is also a
map of temperature, which varies from 8740 K at the pole to 6890 K at the equator.

PETERSON ET AL.1094 Vol. 636

(Peterson et al., 2006)
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Meynet & Maeder (2000), and other papers
I shellular rotation profile, Ω(r) (see Zahn, 1992)
I 1D formalisme
I stellar evolution
I transport processes (chemical elements and angular

momentum)
G. Meynet & A. Maeder: Stellar evolution with rotation. V 111

Daniel Reese Modelling rapidly rotating stars



Introduction
Stellar structure
Pulsation modes

Outlook

Physical phenomena
Recent models

Jackson et al. (2004, 2005), MacGregor et al. (2007)

I barotropic models

I conservative rotation profile: Ω(s)

I attempt to describe Achernar

(MacGregor et al., 2007)

Daniel Reese Modelling rapidly rotating stars



Introduction
Stellar structure
Pulsation modes

Outlook

Physical phenomena
Recent models

I Roxburgh (2004)
• barotropic uniformly rotating model

I Roxburgh (2006)
• transforms 1D models into 2D models
• arbitrary 2D rotation profile
• thermal equilibrium not solved

886 I. W. Roxburgh: 2-dimensional models of rapidly rotating stars. II.

Fig. 1. V ariation of ω = Ω/Ωs w ith radius in the spherically av eraged
ev olv ed model of a 2 M� star.

can determine the eq uation of adiabats r = rm h(θ), along w hich
X is constant, by solv ing the eq uations (∇P − Γ1∇ρ).dr = 0 or

dh

dθ
= − 1

rm

(∂P/∂θ − Γ1∂ρ/∂θ)

(∂P/∂r − Γ1∂ρ/∂r)
(18)

w ith Γ1 = Γ1(P, ρ, Xm) giv en by the eq uation of state this giv es
Γ1 along the adiabatic surfaces r = rm h(θ). T he v alues of Γ1 can
then be transferred to the mesh (ri, θ j) or to the characteristic
surfaces r = rm g(θ) by cubic interpolation.

T his method is not satisfactory in conv ectiv e z ones w here the
w hole region is v ery nearly adiabatic but, since the composition
w ill be constant in such z ones, Γ1 can be computed directly from
the k now n distribution of P and ρ and the k now n constant v alue
of X.

H ow ev er, in the fully ionised interior of most stars w here,
due to ev olution, the v alues of X differ from the initial v alue X0,
the v alues of Γ1 are only w eak ly dependent on X. In the outer
layers, w here Γ1 can v ary considerably, the abundance X is un-
changed from its initial v alue X0. G iv en the uncertainties at-
tached to modelling the chemical ev olution in rotating stars one
could determine approximate v alues of Γ1 by tak ing X constant
on characteristic surfaces (P = const.), thus av oiding the cal-
culation described in the preceding paragraphs. T his w ill yield
acoustic models suitable for studying the effects of rapid rota-
tion on stellar oscillations.

5. An example, M = 2 M�, Xc = 0 .3 5, Ω = Ω(r)

A s an illustrativ e example w e tak e Ω = Ωs ω(x) as a function
only of radius x = r/Ro, w here ω(x), show n in F ig. 1, decreases
from a v alue of 3 in a central core to 1 in the outer env elope,
and has continuous deriv ativ es. A s mentioned in S ect. 3.5, w ith
Ω constant in the outer layers the solution is w ell behav ed at
the surface. F or the spherically av eraged model w e took a star
of M = 2 M� w ith an initial composition X = 0.7 2, Z = 0.02,
ev olv ed to the stage w here Xc = 0.35. T he av erage centrifu-
gal force 2Ω2r/3 w as added to the hydrostatic eq uation, the
remaining eq uations being those of spherical star. T he dimen-
sionless angular v elocity ω(x) w as tak en as fi xed throughout
the ev olution and Ωs determined by req uiring conserv ation of
angular momentum for the star as a w hole. T he initial model
had radius R ≈ 2.5 R� and Ωs = 4.3 × 10−5 rad s−1 corre-
sponding to an eq uatorial v elocity of ≈80 k m s−1. T he star w as
ev olv ed to a central hydrogen abundance Xc = 0.35, at w hich
stage Ωs = 1.29 6 × 10−4 rad s−1. T he ev olutionary track in
the H -R diagram is show n in F ig. 2, w here w e also show the

Fig. 2 . H R diagram for M = 2 M� star w ith Ω = Ω(r) and w ith Ω = 0.
T he initial conditions w ere X = 0.7 2, Z = 0.02, R = 2.5 R�, Ωs =

4.3 × 10−5 rad s−1.

Fig. 3 . C haracteristic surfaces (P = const.) in the 2-dimensional model
for x = r/Ro = 0, 1 in steps of 0.1 along the fi tting angle θm =

cos−1(1/
√

3) denoted by the radial line.

ev olutionary track for a non-rotating star w ith the same initial
conditions. N ote the large effect of rapid rotation on the ev olu-
tionary track s.

T he models w ere produced using the s ta ro x ev olution code
(cf. Roxburgh 2005) w ith the O P A L 2001 eq uation of state
(Rogers & N ayfonov 2002), O P A L G N 9 3 (Iglesias & Rogers
19 9 6) and A lexander & F erguson (19 9 4) opacities, N A C RE
(A ngulo et al. 19 9 9 ) nuclear reaction rates, and a radial mesh
in mass w ith N = 2000 points.

T he spherically av eraged model w as tak en to represent the

2-dimensional model along the angle θm = cos−1(1/
√

3), and
the procedure described in S ect. 3 follow ed to produce the
2-d model. T he angular mesh had N j = 240 points and the mesh
for solv ing P oisson’s eq uation had Nk = 8 points. T he character-
istic surfaces (P = const.) are show n in F ig. 3, the ratio of eq ua-
torial to polar radius of the model Re/Rp = 1.2841, the eq uatorial

rotational v elocity Ve = 27 2.3 k m s−1, and the ratio of centrifu-
gal force to grav ity at the surface eq uator Ω2

s R3
e/G M = 0.587 .

In F ig. 4 w e show the v ariation of density along selected
characteristics w hich pass through the points w ith r/Ro =

0.4, 0.5, 0.6, 0.7 along the fi tting angle θm. δρ/ρ = 0 for θ >θm
along the characteristic through r/Ro = 0.7 since this part of the

(Roxburgh, 2006)
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Physical phenomena
Recent models

The ESTER project
I Rieutord (2006)

• boussinesq model with baroclinic flows

I Espinosa & Rieutord (2007)

• compressible baroclinic model in spherical container

0

0.02

0.04

0.06

0.08

0.1

0.12

(Espinosa & Rieutord, 2007) (Courtesy of M. Rieutord)
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Pulsation modes

I many uncertainties remain in models

• need for observational constraints

I difficulties

• pulsation modes are not given by a single spherical harmonic:
this is a 2D eigenvalue problem

• unfamiliar mode geometry and frequency spectrum
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The frequency spectrum

I Inadequacy of perturbative methods at rapid rotation rates

(Reese et al., 2006)
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A new frequency organisation

(Lignieres et al., 2006, Reese et al., in preparation)

ωn, `, m = n∆n + `∆` + |m|∆m + α±
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Mode geometry

I mode energy concentrated around equatorial region

I there are 10 “radial” nodes (ñ = 10)
I there is 1 “latitudinal” node (˜̀= 1)
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ñ = 9, ˜̀= 0
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ñ = 10, ˜̀= 0
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ñ = 11, ˜̀= 0
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ñ = 11, ˜̀= 1
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ñ = 11, ˜̀= 2
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ñ = 11, ˜̀= 3
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Question: what is the link between this mode geometry and the
geometry of modes in non-rotating stars?

ñ = 2n + ε,

˜̀ =
` − |m| − ε

2
,

ε ≡ ` + m [2]

ωn, `, m = ñ∆̃n + ˜̀∆̃` + |m|∆̃m + α̃
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Ray dynamics

Question: what is the link with ray dynamics?

(Vidal, 2006)
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(Lignières & Georgeot, submitted)

A Poincaré section reveals:

I different regions with different behaviours

I the presence of wave chaos
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I Husimi functions can be used
to “project” eigenmodes
onto Poincaré section

I this confirms correspondance
between ray dynamics and
eigenmode calculations

I likely link between wave
travel times and parameters
∆̃n, ∆̃`, and ∆̃m

(Lignières & Georgeot,
submitted)
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I few attempts to interpret pulsation modes in rapidly rotating
stars
Authors Star v · sin i

Aerts et al., 2006 HD 2036645 180
Dziembowski et al., 2007,
Savonije, 2007

HD 163868 250

Suárez et al., 2005 Altäır 230
Saio et al., 2007 ζ Oph 380

I difficulty with obtaining a reliable mode identification

I forthcoming data on other rapid rotators (HD 181555,
observed by CoRoT)
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What needs to be done:

I search for asymptotic patterns using realistic stellar models

I search for equidistant patterns in observed pulsation spectra

I improve stellar models

I do detailled asteroseismic comparisons
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