

The NO-N1 pipeline

Objectifs : to correct the raw data (N0) from instrumental and environmental perturbations, well known and modelled so far. ("N1" = "Niveau 1" = Level 1)

Supplier for :

- The alarm mode (for exo-planets search)
- Evaluation of the performances (M. Auvergne)
- The N1-N2 pipeline (see Baudin's talk)
- Target follow-up (exo-planet channel)

People involved : M. Auvergne, F. Baudin, S. Chaintreuil, R. Drummond, F. Fialho, E. Grolleau, G. Jeanville, L. Jorda, P. Journoud, V. Lapeyrere, L. Pinheiro, D. Naudet, R. Romagnan, R. Samadi

A simple algebra....

$$F_e = JCF \ x \ TCF \ x \ (gain \ x \ (F_{ADU} - offset) - BG_e)$$

 $BG_e = gain x (BG_{ADU} - offset)$

... but some important issues:

- Electro-Magnetic Interferences (EMI)
- Background to use ?
- Integration time variations
- Jitter noise
- Correction of the outliers (eg. cosmics rays)
- Hot pixels
- Long term variations

The Electromagnetic interferences (EMI)

Before correction

After correction

EMI pattern modelled by V. Lapeyrere (LESIA)

Residual (as seen on the prescan line) : more important on E2 (~10 adu)

For monochromatic LC : 1 offset value For chromatic LC : 3 offset values : Red Green Blue

The Electromagnetic interferences (EMI)

32 EMI patterns (V. Lapeyrere)

Integration over the mask: offset applied on the LC, we then derive 32 offset values

N0-N1 pipeline : KASC meeting 29th October 2007

Variations of the on-board clock (On-board Time : OBT)

Using the GPS tops and the on-board counter we compute the variations of the OBT (method by J. Mesnager, CNES)

Low temperature coefficient (~0.5 ppm/K). Orbital variations: 0.2 μ s Systematic diff. : 5 – 7 μ s High freq. noise: ~ 20 ns (rms)

N0-N1 pipeline : KASC meeting 29th October 2007

Correction of the integration time variations

Exposure controlled by the OBT variations of ~ 220 ppm (200 μ s)

Time Correction Factor:

 $TCF = \frac{nominal\ integration\ time}{effective\ integration\ time}$

N0-N1 pipeline : KASC meeting 29th October 2007

Background correction

(exo channel)

Three methods :

- The closest background light-curve
- Triangularization
- Sky background model (under development and test)

Problem addressed by Rachel Drummond (Leuven)

Gradient: along X : 4 e- / 1000 pix (half CCD) along y : 1.3 e- / 1000 pix (half CCD) Range : 360 e- to 390 e-

Background correction conclusions (exo channel)

- Closest window : the simplest correction, can have a bad result when a hot pixel occurs in the BackGround (BG) LC – care should be taken!
- Triangularisation doesn't improve the quality : the probability to have one hot pixel in one of the 3 BG windows is 3 times higher.
- A polynomial fit is of comparable quality when all windows are used (512 s fit). It is beneficial in cases of bright pixels in the nearest background window

Correction of the jitter noise

Two steps :

- Calculation of the star displacements
- Correction of the jitter noise

methods used :

- Correction based on the star PSF (astero channel)
- Correction based on the star spectrum (exo channel) : correction of the jitter noise induced by the color frontiers (method proposed by M. Ollivier)

Conception, development and validation by <u>Fabio Fialho</u> (LESIA)

N0-N1 pipeline : KASC meeting 29th October 2007

JCFR, JCFG, JCFB : jitter correction factors

Hyp. : the star flux is constant during the exposure (32s) and during the accumulation time (512s)

 $F_{R}^{'} = JCFR \cdot F_{R}$

JCFR + JCFG + JCFB = 1

Jitter correction : calculation of the star displacements

- Star Right Ascension (RA) and declination (DEC) + Field of View Model (FoVM, modelled by L. Jorda, OAMP) ⇒ X0 and Y0 the star set point position
- Using the 10 targets + FoVM \Rightarrow variation of the satellite Line of Sight with respect to time \Rightarrow 3 angles: Δ Theta(t), Δ Psi (t), Δ Phi (t)
- <u>Linearisation</u> of the FoVM at X0, Y0 + variation of the satellite Line of Sight $(\Delta Theta(t), \Delta Psi(t), \Delta Phi(t))$:
- ⇒ DELTA_X (t) and DELTA_Y (t) , the star displacements with respect to the star set point position and time

The star displacements

(astero channel)

Jitter correction, 512s LC

Jitter correction – white noise

Summary

Exo channel		Red	Green	Blue	Sampling	Mag.	#stars
Gain in term of	Gain	7,1	7	6,8	32	12-12.5	86
	Gain	2,3	2,7	2,2	512	12-12.5	92
	Gain	2,4	2,5	2,5	32->512	12-12.5	86
(4 days data							
Sel)	Gain	1,6	1,7	1,4	512	14.5-15	624

Important residual at 2 f0: probably due to the linearisation of the FoVM

Astero channel

White noise above 5 mHz compared to the photon noise limit, before and after jitter correction

		Withe noise w.r.t. photon noise lim			
ID	mv	Mask	Before	After	
7780	9	Rough	200,00%	14,00%	
		Fine	19,00%	14,00%	
7636	5,6	Rough	11,00%	8,00%	

Hot pixels ... and their consequences

A star LC corrected from the BackGround (BG) using the closest BG window

The BG LC used

- Problem addressed by V.
 Lapeyrere
- Hot pixel relaxation : modelled and corrected using Scargle (1998)'s method (to be implemented in the pipeline)

Exo Background window during 10 days

Credit V. Lapeyrere

٠

Detection of the outliers

- Several methods implemented
- The SAA crossings are flagged

Duty-cycle (for the IR/astero) :

• \sim 90 % if we apply the outlier detection

- \sim 88 % if we exclude in addition the SAA crossings

N0-N1 pipeline : KASC meeting 29th October 2007

Long terms variations : Astero Star LC

Perspectives (astero channel)

Current status:

- The astero pipeline (V 1.0) has been validated by the *Groupe Traitement Segment Sol* (GT2S) on beginning of June.
- V 1.1 released middle of September

Perspectives:

- Improving the speed performances
- Decreasing the orbital residuals, probably possible
- Decreasing the EMI residuals, if possible
- Detection of the hot pixels and suppression
- Correction of the long term variations
- Improving the automation of the pipeline

Perspectives (exo channel)

Current status:

• The current exo pipeline (V 0.2) is being improved ;

Short term perspectives (for the first validated release)

 Detection and suppression of the hot pixels occurring in the Background LC

Long term perspectives:

- Improving the speed performances
- Decreasing the orbital residuals due to the jitter
- Detection of the hot pixels in the star LC and suppression (?)
- Correction of the long term variations
- Improving the automation of the pipeline

Documentation (NO-N1)

- "Description of the N1 products generated at the CMC during the observation session" (COR.LESIA.06.008; version 1.1; in English). V 1.2 coming soon...
- Contribution to the CoRoT Book : "Chap V.5/ Extraction of the photometric information", Samadi et al 2007, astroph/0703354
- "Description du contenu des corrections N0 à N1 en mode observation" (COR.LESIA.06.026; version 0.4; in french)
- "Contenu et fonctionnalités de la Boite à Outil (BaO) du segment sol" (COR.LESIA.06.025, version 0.5, in French)

The NO-N1 Pipeline

Tool Box for the Ground Segment ("Boite À Outils", BaO)

Goal: to have available a set of tools for:

- Visualization (1D and 2D)
- **Diagnostics** and **characterization** of the N0, N1, and N2 data
- Evaluation of the correction performance
- Help for the development of new correction strategies

Current contents and functionalities :

- · Outlier removal (2 methods)
- · Fast Fourier Transform, amplitude, and power spectra
- · Fit of analytical functions (Gaussian, sine, sinc, polynomials)
- · Correlation products between two signals with different sampling
- · Detection and correction of discontinuities in a time series
- · Statistical test (Kolmogorov-Smirnov)
- Detection and fit of several sinusoids (NEW)
- Filtering in the Fourier domain (NEW)
 - Visualization of several 1 ppedata KAGe Return and 6 NEW 2007

The star displacements

(astero channel)

Jitter correction : calculation of the star displacements

DELTA_X – BarycenterX ~ 0.28 pix (rms) (1 pix = 2.3 arcsec) DELTA_Y – BarycenterY ~ 0.29 pix (rms)

Background correction polynomial fit

The two CCDs are fitted together for each time step

Background correction polynomial fit

The two CCDs are fitted separately for each time step

No matching between the two fits !

Astero-channel LC process

'asprocess'

Background correction closest window

Standard deviation = 1.02 Square difference = 1121

Standard deviation =9.82 Square difference = 41960

Values given outside SAA

Background correction 'triangularisation'

Standard deviation = 1.15Square difference = 788

Standard deviation = 1.97 Square difference = 16134

Values given outside SAA

Background correction polynomial fit

Standard deviation = 5.78

Offset E2L

Correction of the outlier

Three methods :

- Correction based on the signal histogram
- Correction based on a running box
- Correction using the variance computed on board (for averaged ligthcurve : 512s sampling) : to be implemented in the pipelines

N0-N1 pipeline : KASC meeting 29th October 2007

Correction of the integration time variations

