COROT data treatment: Part II

F. Baudin, P. Boumier, L. Lefèvre, E. Michel, R. Samadi

COROT data treatment

- N0 to N1 (Réza's talk):
 - aim: to correct instrument known effects ("a priori" corrections)
- N1 to N2:
 - aim: to correct remaining perturbation at N1
 level = "a posteriori" corrections

...ideally,many "a posteriori" corrections should become "a priori"

COROT N2 data

General idea: to provide data (light curves) ready to use **plus** information on the data treatment.

=> Flag array associated to the light curve:

Rapid overview of the N1/N2 "pipeline"

- (predicted) Discontinuities correction
- Outliers replacement
- Temporal re-sampling

Soon on a computer screen near you:

- PSF-fitting based-outlier replacement
- Long term trend correction
- Improvement of orbital perturbations correction (jitter)
- Unpredicted discontinuities ("hot pixels") correction

Discontinuities correction

On board "mask" photometry

- + Mask change (optimization)
- = predictable discontinuity (reference level?)

Outliers replacement

Nature abhors a vacuum, Fourier transform too.

MOST data, thanks Jaymie

Outliers replacement

Nature abhors a vacuum, Fourier transform too.

PSF fitting

- SAA crossings = 10% of data lost with onboard photometry
- PSF fitting restores about 40% of lost data (for the moment)

Work by Laure Lefèvre

Observed star

Time in satellite frame \neq Time in heliocentric frame

 $\Delta v/v \le 10^{-4}$

 Conversion from satellite frame to heliocentric frame: no problem but yields an irregular time sampling (not good for FFT aficionados)

- Several possibilities to solve this:
 - simple interpolation (method 1)
 - redistribution of 1s sampled data on 32s regular sampling in heliocentric frame (method 2)

 $v = 100 \ \mu Hz$

v = 5 mHz

Red: analytical resultBlack: FFT of raw signalDark blue & light blue: FFT of corrected signal

v = 10 mHz

Red: analytical resultBlack: FFT of raw signalDark blue & light blue: FFT of corrected signal

Long-term trends/Multiplexing

$$S_i = \sum_j (r_{ij} - c_i a_j)^2 / \sigma_{ij}^2$$

r_{ij} = measurement for target i in image (or at time) j
a_j = systematic perturbation (air mass, instrument
ageing...)

c_i = individual response of a target to a systematic perturbation

Long-term trends/Multiplexing

$$S_j = \sum_j (r_{ij} - c_i a_j)^2 / \sigma_{ij}^2$$

- r_{ij} = measurement for target i in image (or at time) j
 a_j = systematic perturbation (air mass, instrument
 ageing...)
- c_i = individual response of target to systematic perturbation

Long-term trends/Multiplexing

$$S = \sum_{ij} (r_{ij} - c_i a_j)^2 / \sigma_{ij}^2$$

Tamuz, Mazeh & Zucker, MNRAS (2005) 356, 1466:

a black (magic) box to find **a** and **c**.

Work in progress by R. Alonso & L. Jorda

The problems Kepler should not have

Periodic "outliers", "proton impacts"... alias the SAA perturbation

The problems Kepler should not have

Conclusion

Heliocentric orbit \Rightarrow much less work for data treatment!

...but be sure you'll have a lot to do anyway.