Heating and cooling of the solar corona Proposed Hinode observations

É. Buchlin

Imperial College, London

Hinode data analysis workshop, Orsay, 14 Nov 2007

Loop model

Proposed observations

New coronal loop model In the framework of the coronal heating problem

- SHELLATM (Buchlin & Velli): MHD turbulence in loop
- ▶ HYDRAD (Bradshaw & Mason): 1D hydrodynamics, incl. radiation

What does the model do?

Forward-modelling of loop properties and spectroscopic emission, with:

- Loop footpoint motions, Alfvén waves, turbulent heating
- ID hydrodynamics (including thermodynamics and ion populations)

Formation of a hot corona

- Heating everywhere, but most effective in low-density corona
- Corona becomes hot, large scale-height
- Evaporation from chromosphere, transition region

Emission in UV

Line intensity from atomic physics (CHIANTI)

- Line shift from HYDRAD
- Line width from SHELLATM (turb.) + HYDRAD (thermal)

Emission in UV

- Line intensity from atomic physics (CHIANTI)
- Line shift from HYDRAD
- Line width from SHELLATM (turb.) + HYDRAD (thermal)

Imperial College London

É. Buchlin Heating and cooling of the solar corona

Emission in UV

- Line intensity from atomic physics (CHIANTI)
- Line shift from HYDRAD
- ► *Line width* from SHELLATM (turb.) + HYDRAD (thermal)

Proposed observations

Loop model

- Compare flows, temperature evolution, DEM, T-EM, T-Doppler, T-width distributions... with model
 - use STEREO to take loop geometry into account
- ► Get spectra of turbulence (in the corona: velocity field)
- ▶ Get structure functions → intermittency: how does turbulence (and turbulent heating) fill the corona, the loops (strands)...?

- Compare flows, temperature evolution, DEM, T-EM, T-Doppler, T-width distributions... with model
 - use STEREO to take loop geometry into account
- Get spectra of turbulence (in the corona: velocity field)
- ▶ Get structure functions → intermittency: how does turbulence (and turbulent heating) fill the corona, the loops (strands)...?

- Compare flows, temperature evolution, DEM, T-EM, T-Doppler, T-width distributions... with model
 - use STEREO to take loop geometry into account
- Get spectra of turbulence (in the corona: velocity field)
- ► Get structure functions → intermittency: how does turbulence (and turbulent heating) fill the corona, the loops (strands)...?

- Compare flows, temperature evolution, DEM, T-EM, T-Doppler, T-width distributions... with model
 - use STEREO to take loop geometry into account
- Get spectra of turbulence (in the corona: velocity field)
- ► Get structure functions → intermittency: how does turbulence (and turbulent heating) fill the corona, the loops (strands)...?

Data needed:

- intensity and velocity fields in different lines (XRT+EIS)
- extrapolated magnetic field and 3D loop geometry would be useful (SOT+SECCHI/STEREO)

