# On the origin of cosmic rays. What can we learn from <u>radio supernovae</u> and <u>symbiotic novae</u>?



V. Tatischeff CSNSM, Orsay



Galactic and extragalactic diffuse emissions, IAS, June 8th 2010

# Galactic cosmic-ray and supernova energetics



- Total power supplied by SNe:  $L_{SN} \sim 1.5 \times 10^{51} \rm ~erg~ \times~50~ yr^{-1} \sim 10^{42} \rm ~erg/s$ 

 $\Rightarrow$  SN acceleration efficiency ~ 5%

#### Cosmic-ray production and SNR evolution

• Most of the GCRs are produced in SNRs at the beginning of the Sedov-Taylor stage  $(t \sim 10^3 \text{ yr for } n_{\text{ISM}} = 1 \text{ cm}^{-3})$  and released in the ISM at the end  $(t > 2 \times 10^4 \text{ yr}) \Rightarrow$  adiabatic deceleration during the SNR expansion



• What is the origin of GCRs above ~3x10<sup>15</sup> eV ?

#### Importance of the progenitor's stellar wind

- In CC SNe, the shock initially runs through the progenitor's stellar wind
- High density  $\rho_{\rm CSM}$  and  $V_s \Rightarrow$  high amplified *B* ( $B^2/8\pi \propto \rho_{\rm CSM}V_s^2$ )  $\Rightarrow$  high  $E_{\rm max}$  (Völk & Biermann 1988:  $E_{\rm max} \rightarrow 10^{19}$  eV)
- SN IIb: explosion of a red supergiant (type eIIb, Chevalier et al. 2010) which has a slow and dense wind,  $(dM/dt)_{RSG} > \sim 3 \times 10^{-5} M_{\odot} yr^{-1}$

~25  $M_{\odot} < M_{ZAMS} < ~35 M_{\odot}$ (single star)  $\Rightarrow$  rare events f ~ f(SN IIP) / 10



# SN 1993J — One of the best observed radio SN



- Type IIb. Discovered on 1993 March 28 in M81 (D=3.63±0.34 Mpc)
- Explosion of a ~17  $M_{\odot}$  KO I supergiant in a binary system

### SN 1993J VLBI observations





# Radio SN model (1)

- Nonlinear diffusive shock acceleration (NDSA) model (Berezhko & Ellison 1999)  $\Rightarrow f_p(p,r_s)$  and  $f_e(p,r_s)$   $f_e$  depends on the proton injection parameter  $\eta_{inj}^p$ (fraction of shocked protons injected into the DSA)
- Electron energy losses during the expansion:
   *r*<sub>s</sub>
   *r*<sub>s</sub>



# Radio SN model (2)



- Hydrodynamic of the postshock plasma: self-similar solutions (Chevalier 1983)
- Postshock magnetic field evolution:
  - advected in the plasma flow or
- damped by cascading of MHD wave energy (Pohl et al. 2005)
- Synchrotron emission: radiative transfer calculations including synchrotron self-absorption
- Free-free absorption in the clumpy wind lost from the progenitor star
- $\Rightarrow$  4 free parameters:

 $(dM/dt)_{RSG}, B_{u0}, \eta_{inj}^{p}$ , and  $K_{ep}$ 

# SN 1993J model results



SN 1993J and the origin of cosmic rays



- Rapid acceleration above the "knee" energy of 3x10<sup>15</sup> eV
- Total CR energy:  $E_{CR} \cong \int_{day1}^{day3100} \varepsilon_{CR}(t) \times 0.5 \rho_{CSM} v_s^3 \times 4\pi r_s^2 dt = 7.4 \times 10^{49} \text{ erg}$
- Escape of high-energy CRs after day ~3100 as  $\rho_{\rm CSM} > \Rightarrow B_u > \Rightarrow l_{\rm diff}$

#### Radio supernovae and the origin of cosmic rays

 B-field amplification in SN 1993J, possibly by the Bell's nonresonant CR streaming instability ⇒ CR production above 3×10<sup>15</sup> eV (Tatischeff 2009)





- Synchrotron self absorption
   B-field amplification
- ◆• Free-free absorption
   ⇒ progenitor mass-loss rate
  - +B-field damping, CR injection...

# Symbiotic novae

- Binary systems with a white dwarf and a red giant star (symbiotic)
- Best-known object:
   RS Ophiuchi
- Massive white dwarf  $(M_{\rm WD}\sim1.35~M\odot)$  maybe a SN Ia in ~10<sup>5</sup>-10<sup>7</sup> yrs
- Thermonuclear runaway outbursts: 1898, 1907, 1933, 1945, 1958, 1967, 1985, and 2006



 $\Rightarrow$  ~20 years recurrence period, as compared to  $10^4-10^5$  yrs for classical novae, due to the higher  $(dM/dt)_{\rm acc}$  and  $M_{\rm WD}$ 

| Symbiotic r                                                                       | novae as fast                                                 | " <mark>miniature s</mark> u                 | spernovae"                                              |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|
| Char. time of evolution: $t_c \propto \frac{M_{ej}^{3/2} v_w}{E_{out}^{1/2} M_w}$ |                                                               | 60 18 cm<br>60 0'Brien et al. (2006)<br>20 0 | 18 cm<br>et al. (2006)<br>0 0 1                         |
| RS Oph                                                                            | SN II                                                         | 0                                            |                                                         |
| $M_{\rm ej} \sim 3 \times 10^{-6} M_{\odot}$                                      | $M_{\rm ej} \sim 10 \; M_{\odot}$                             | -60 - Day 13                                 | 8.8) Day 13.8_<br>+ + + + + + + + + + + + + + + + + + + |
| $E_{\rm out} \sim 10^{44}~{\rm erg}$                                              | $E_{\rm out} \sim 10^{51} {\rm ~erg}$                         | 40                                           |                                                         |
| • $M_{\rm RG} \sim 10^{-6} M_{\odot} {\rm yr}^{-1}$                               | $\int_{RSG}^{\bullet} \sim 10^{-5} M_{\odot} \text{ yr}^{-1}$ | -40 -<br>-60 Day 21                          |                                                         |
| $\Rightarrow t_c$ (RS Oph) ~ 10 <sup>-5</sup> $t_c$ (SN II)                       |                                                               | 60-<br>40-                                   |                                                         |
| <ul> <li>free expansion phase: days</li> </ul>                                    |                                                               |                                              |                                                         |
| <ul> <li>adiabatic phase: ~2 months</li> </ul>                                    |                                                               |                                              |                                                         |

. Day 28.7 60 40 20 0 -20 -40 -60 60 40 20 0 -20 -40 -60 Relative position (mas)

Day 28.7

• then radiative cooling phase

#### Blast wave evolution in RS Oph (2006)



- What cooled the shock after ~6 days ( $T_s \sim 10^8$  K at day 6 and radiative cooling was not important)?  $\Rightarrow$  Cosmic-rays
- What makes the X-ray measurements of  $V_s$  lower than the IR data? CRs

#### Cosmic-ray acceleration in RS Oph (2006)

- Good agreement between the IR data and the X-ray measurements of  $T_s$  for moderate CR acceleration efficiency,  $\eta_{inj} \sim 10^{-4}$
- ⇒ Energy loss rate due to accelerated particle escape:  $2 \times 10^{38} \left(\frac{\varepsilon_{esc}}{0.15}\right) \left(\frac{t}{6 \text{ days}}\right)^{-1.5} \text{ erg s}^{-1}$ 
  - ~100 times the bolometric luminosity of the postshock plasma at t = 6 days

(Tatischeff & Hernanz 2007)



## Predicted y-ray emission from RS Oph (2006)

- $\pi^0$  production calculated from  $\varepsilon_{\rm CR}$  and  $(dM/dt)_{\rm RG}$
- **IC** contribution estimated from the nonthermal synchrotron luminosity,  $L_{\rm syn} \sim 5 \times 10^{33} t_d^{-1.3} \, {\rm erg \ s^{-1}}$  (Kantharia et al. 2007) and the ejecta luminosity,  $L_{\rm ej} \sim L_{\rm Edd} = 2 \times 10^{38} \, {\rm erg \ s^{-1}} \Rightarrow L_{\rm IC} = L_{\rm syn} \times U_{\rm rad} / (B^2/8\pi) \sim L_{\rm syn}$

 $\Rightarrow \gamma\text{-rays}$  mainly from  $\pi^0$  production





# Known or suspected symbiotic recurrent novae

|           | m <sub>max</sub> | m <sub>min</sub> | Dist<br>(kpc) | Sec.<br>type | Outburst<br>(years)                                                              |
|-----------|------------------|------------------|---------------|--------------|----------------------------------------------------------------------------------|
| T CrB     | 2.0p             | 10.2v            | 1.3           | M3III        | 1866, 1946                                                                       |
| RS Oph    | 5.0v             | 11.5v            | 2.4           | M0/2III      | 1898, <mark>1907</mark> , 1933,<br><mark>1945</mark> , 1958, 1967,<br>1985, 2006 |
| V3890 Sgr | 8.2v             | 17.0:            | 5.2           | M5III        | 1962, 1990                                                                       |
| V745 Sco  | 9.6v             | 19.0:            | 4.6           | M6III        | 1937, 1989                                                                       |
| V723 Sco  | 9.8p             | 19.0j            |               | NIR ph. [1]  | 1952                                                                             |
| EU Sct    | 8.4p             | 18p              |               | - [2]        | 1949                                                                             |
| V3645 Sgr | 12.6p            | 18.0p            |               | - [2]        | 1970                                                                             |
| V1172 Sgr | 9.0p             | 18.0j            |               | - [2,3]      | 1951                                                                             |

[1] Harrison et al. (1992); [2] Weight et al. (1994); [3] Hoard et al. (2002)

- ~340 CN outbursts detected since  $1850 \Rightarrow -5\%$  in red giant sec.
- Galactic nova rate: 20–40 yr<sup>-1</sup> (~10% detected)  $\Rightarrow$  ~1–2 yr<sup>-1</sup> with RG
- Fermi would detect a burst like RS Oph (2006) at  $D_{max} = 10.5$  kpc
- ⇒ Fermi may detect a few RS Oph-like novae during its all-sky survey

## The 2010 outburst of V407 Cygni

- Symbiotic Mira binary system (WD + AGB star of Mira type)
- Detected with Fermi-LAT on 13-14 March 2010, ~2 days after the optical outburst (ATEL #2487),  $F_{\gamma}$ (>100 MeV) ~ 10<sup>-6</sup> cm<sup>-2</sup> s<sup>-1</sup>
- From the Mira's pulsation ( $P_{AGB} = 763$  days)  $\Rightarrow D = 1.8$  kpc,  $(dM/dt)_{AGB} \sim 3 \times 10^{-5} M$  Gyr<sup>-1</sup>
- From the orbital period ( $P_{orb} \sim 43$  years)  $\Rightarrow$  Binary separation  $a \sim 15.5$  AU
- From the width of optical and IR lines  $\Rightarrow V_s \sim 3600 \text{ km s}^{-1}$

$$\Rightarrow \text{Estimated } \gamma \text{-ray flux from } \pi^{0} \text{ production:}$$

$$F_{\gamma}(>100 \text{ MeV}) \approx 3 \times 10^{-6} \left( \frac{\langle n_{ps} \rangle}{2.4 \times 10^{9} \text{ cm}^{-3}} \right) \left( \frac{\theta_{CR} E_{nova}}{10^{43} \text{ erg}} \right) \left( \frac{D}{1.8 \text{ kpc}} \right)^{-2} \text{ cm}^{-2} \text{ s}^{-1}$$

 $\Rightarrow$  CR injection, evolution of a CR modified shock...?





#### Cosmic-ray production and SNR evolution

• Mechanical power processed in a NR blast wave:  $P_b = 0.5 \rho_{\text{ISM}} V_s^3 \times 4 \pi R_s^2$ 



#### Cosmic-ray modified shock



• Higher energy particles feel a higher compression ratio  $\Rightarrow$  concave spect.





## Magnetic field amplification

 Saturated δB from the Bell's nonresonant streaming instability (Pelletier et al. 2006):

$$\frac{\delta B_{\rm nr}^2}{8\pi} \approx 0.1 \left(\frac{P_{\rm CR}}{\rho_{\rm u} v_s^2}\right) \frac{\rho_{\rm u} v_s^3}{c}$$

2-5 lower than the "measured" B-field

• Further amplification by the resonant instability (Pelletier et al. 2006)?

$$\frac{\delta B_{\rm res}^2}{\delta B_{\rm nr}^2} \sim \sqrt{\frac{P_{\rm CR}}{\rho_u v_s^2}} \frac{c}{v_s} \Rightarrow \text{No}$$

• Empirical formula for both Galactic

SNRs (Berezhko 2008) and SN 1993J  

$$\frac{\delta B^2}{8\pi} \approx 10^{-1} P_{CR} \left( \frac{v_s}{3 \times 10^4 \text{ km s}^{-1}} \right)$$



# MFA and cosmic-ray escape

 Growth timescale for MHD waves driven by the nonresonant streaming instability (Bell 2004):

$$\tau_{\rm nr}(x) \propto \frac{E_{p,{\rm min}}(x)}{\varepsilon_{\rm CR}}$$

 $f[x,p(x_1)]$   $f[x,p(x_{esc})]$   $x_1$ 

where  $E_{p,\min}(x)$  is the minimum CR energy at the upstream distance x( $\tau_{nr}(x)$  is increasing with x)

• The time constraint  $\tau_{nr}(x) \le t$  defines a maximum distance  $x_{esc}$  for magnetic field amplification and particle confinement



• For SN 1993J,  $f_{\rm esc} = x_{\rm esc} / r_{\rm s} \approx 0.05$  independent of time

#### Gamma-ray emission from $\pi^0$ production



\* Fermi LAT sensitivity for a  $5\sigma$  detection in all-sky survey operation

The early TeV emission was strongly attenuated by  $\gamma + \gamma \rightarrow e^+ + e^-$  in the dense radiation field from the SN ejecta

⇒ Type II SNe could be detected in  $\pi^0$ -decay  $\gamma$ -rays out to a maximum distance of ≈1 Mpc

# SN 2008D/XRT 080109

- X-ray transient: SN shock
   breakout (e.g. Soderberg et al.
   2008; Chevalier & Fransson 2008) ,
- In NGC 2770 (*D* = 28 Mpc)
- Type Ib  $\Rightarrow$  explosion of a WR star ( $u_{WR} \sim 1000 \text{ km s}^{-1} \sim 100 u_{RSG}$ )





 Radio light curves can be well fitted with a pure SSA model ⇒ From the peak flux at each frequency (see, e.g., Chevalier 1998):

$$v_{\rm s} \approx 7 \times 10^4 \left(\frac{t}{1 \text{ day}}\right)^{m-1} \text{ km s}^{-1}, \text{ with } m = 0.91$$
  
 $\langle B \rangle \approx 24.0 \left(\frac{t}{1 \text{ day}}\right)^{-b} \text{ G, with } b = -1.3$ 

## SN 2008D — Preliminary results

- MFA by the nonresonant streaming instability:  $B_u \equiv \delta B_{nr}$  in the NDSA code
- Particle injection:  $p_{inj} = \xi p_{th}$ 10 **0.7** cm 1.2 cm with  $\xi \sim 3.5-4 \Rightarrow \eta_{ini}^{p}$ 1 (Blasi et al. 2005) = 3.4 10  $r_{e/p}^{T} = 13 (t/1 \text{ day})^{-1}$ • No constraints on (dM/dt)10 10 Flux density (mJy) 3.5 cm 2 cm WR (FFA is negligible). 1 In 10 Galactic WR stars: (dM/dt)10  $_{\rm WR} \approx 3 \times 10^{-5} M {
  m yr}^{-1}$  (Cappa et 20 cm 6 cm al. 2004) 1  $\Rightarrow$  2 free 10 parameters: - ξ 10  $10^{2}$  1 10<sup>2</sup>  $- \mathbf{r}_{e/p} = \eta_{inj}^{e} / \eta_{inj}^{p}$ 10 10 days after outburst days after outburst

## SN 2008D — Preliminary questions

• The simplest model with constant  $\xi$  and  $r_{\rm e/p}$  +  $\delta B$  advection does not work



# New modeling of SN 1993J

• FFA being uncertain ( $T_{\rm CSM}$ , gas clumps?),  $\rho_u$  and thus  $\delta B_{\rm nr}$  might be higher. Assuming  $(dM/dt)_{\rm RSG} = 3.8 \times 10^{-4} M_{\odot} {\rm yr}^{-1}$ :

