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Example: Transport of Cosmic Rays in the Solar System

Interaction of charged particles with:

the magnetic field of the Sun ~B0 ≈ B0~ez ≈ const.

the turbulent magnetic fields of the solar wind δ~B
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Magnetic Correlation Functions

Dominant mean magnetic field ~B0 = B0~ez (magnetic field of the Sun).

Total magnetic field is a composition of the mean field and a turbulent

component: ~B = ~B0 + δ~B

Two-Point-Two-Time correlation function in homogeneous turbulence:〈
δBi (~x , t)δBj(~0, 0)

〉
=

∫
d3k Pij(~k , t)e i~x·~k

where Pij(~k , t) =< δBi (~k , t)δBj(~k , 0) > is the correlation tensor in the
wavenumber space.



General Introduction to Charged Particle
Transport in Turbulence

Models for Solar Wind Turbulence

Standards assumption (same temporal behavior of all tensor compo-
nents):

Pij(~k , t) = Γ(~k , t)Pij(~k).

Pij(~k) is the static correlation tensor and Γ(~k , t) is the dynamical corre-
lation function describing wave propagation effects and dynamical turbu-
lence effects.

General form for axisymmetric turbulence (Matthaeus & Smith 1981):

Pij(~k) = A(k‖, k⊥)

[
δij −

kikj
k2

]
.

Properties of the spectrum A(k‖, k⊥) can be measured (in the solar sys-
tem) or must be approximated by models.
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Slab Turbulence

A simple model for approximating the turbulence is the slab model
defined as

Aslab(k‖, k⊥) = g slab(k‖)
δ(k⊥)

k⊥

corresponding to δBi (~x) = δBi (z). g slab(k‖) is the (slab) wave spectrum.

Fig.: The magnetic field lines for slab turbulence.
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The Turbulence Spectrum

An important property of turbulence
is the scale dependence:

Large scales: the turbulence
gains energy ⇒ energy range

Intermediate scales: energy is
transfered from large to small
scales ⇒ inertial range

Small scales: turbulence loses
energy due to dissipation
⇒ dissipation range

Fig.: The turbulence spectrum as
measured in the solar wind (from
Denskat & Neubauer 1982).
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Spectral Anisotropy

The slab model is not a good approximation for solar wind turbulence.
According to Matthaeus et al. (1990) there is a strong perpendicular
component (Maltese cross):

Fig.: Contour plot of cor-
relations of interplanetary
magnetic field fluctuations
as a function of parallel and
perpendicular distance with
respect to the mean mag-
netic field (from Matthaeus
et al. 1990).
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Two-component Turbulence

Approximation: Two-component or Slab / 2D composite model:

δBi (~x) = δBi (z) + δBi (x , y).

The correlation functions of the 2D modes is

A2D(k‖, k⊥) = g2D(k⊥)
δ(k‖)

k⊥

Fig.: The magnetic field lines for
combined slab/2D turbulence.
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Alternative Models for Turbulence

The slab/2D model is used by the solar wind community. However, there
are other models to approximate turbulence. Some examples are:

Isotropic Turbulence: No preferred direction.

Anisotropic Turbulence Models (see, e.g., Lerche & Schlickeiser
2001).

Models based on the Goldreich-Sridhar model (see, e.g., Chandran
2000, Cho et al. 2002).
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Transport of Cosmic Rays in the Solar System

Interaction of charged particles with:

the magnetic field of the Sun ~B0 ≈ B0~ez ≈ const.

the turbulent magnetic fields of the solar wind δ~B
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The Unperturbed Orbit

x(t) ≈ v

Ω

√
1− µ2 sin (Ωt)

y(t) ≈ v

Ω

√
1− µ2 cos (Ωt)

z(t) ≈ vµt, µ = const.
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Parallel Scattering of Cosmic Rays

Physical process: pitch-angle diffusion

v̇‖/v ∼ µ̇ =
Ω

v

(
vx
δBy

B0
− vy

δBx

B0

)
6= 0
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Perpendicular Scattering of Cosmic Rays

Physical process: field line random walk

dx =
δBx

B0
dz ⇒ vx = vz

δBx

B0
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Stochastic Particle Motion

Mean square deviation (MSD)〈
(∆x)2

〉
=
〈

(x(t)− x(0))2
〉
∼ tσ

Different cases:

0 < σ < 1 : Subdiffusion

σ = 1 : (Markovian) Diffusion

σ > 1 : Superdiffusion

Diffusion coefficient (Kubo-formula)

κxx = lim
t→∞

〈
(∆x)2

〉
2t

=

∫ ∞
0

dt 〈vx(t)vx(0)〉
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Turbulence and Transport Theory

⇒ Terms of the form

〈δBi (~x(t))δBj(~x(0))〉

occur!

Problem I: What are the magnetic fields/correlation functions?

δBi (~x(t)) =

∫
d3k δBi (~k , t)e i~k·~x(t)

⇒ Pij(~k , t) =
〈
δBi (~k , t)δB∗j (~k , 0)

〉
(see first part of this talk).

Problem II: What is the particle trajectory ~x(t)?
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Summery

The most important questions in Cosmic Ray diffusion theory:

1 What is the nature of turbulence described by the tensor Pij(~k, t)?
⇒ Cosmic Ray diffusion theory is directly related to plasma physics
and turbulence theory!

2 How can we describe the stochastic motion of charged particles in
turbulence?
⇒ Different approaches to solve this problem will be reviewed in the
second talk.
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