$\begin{array}{l} \text{Magnetic fields} \\ \text{at} \geq \text{Galactic scales} \end{array}$

Martin Lemoine

Institut d'Astrophysique de Paris CNRS, Université Pierre & Marie Curie

Possible effects of cosmic magnetic fields on large scales (Galactic, clusters, IGM...)

o diffuse emission:

- e.g. energetic electrons radiate through synchrotron in radio, inverse Compton in the X and gamma range...
- in the Galaxy, synchrotron component relatively well known, discussed earlier...
- Galactic high energy diffuse emission also discussed earlier ...
- extra-Galactic: clusters vs less dense IGM?

o cosmic ray transport:

- Galactic CR: to be discussed by Ptuskin / Maurin / Shalchi
- X-Galactic CR: many free parameters... unknown non-thermal content of IGM at energies $\lesssim 10^{18}~eV...$

o structure formation:

• in general, expected to be weak, except (maybe) inside clusters

Galactic magnetic field

 observations: Faraday rotation of polarized background sources or pulsars yields

 $\Delta \Psi = 812 \operatorname{rad} \lambda_{\mathrm{m}}^2 \int \mathrm{d} l_{\mathrm{kpc}} n_{e,\mathrm{cm}^{-3}} B_{\parallel,\mu\mathrm{G}}$

(n_e from pulsar dispersion measures)

 \circ large scale component B₀ follows spiral arms with reversal in inter-arm: bisymmetric geometry Han et al. 2005

 $_{\rm O}$ turbulent component: coherence scale I $\sim {\cal O}(10\text{-}100\text{pc})$ (?), strength $\delta B \sim B_0$

 \circ total B \sim 6 μG near the Sun, with a radial scale length of ${\sim}10 \text{kpc}~(\text{Beck 08})$

 $_{0}$ the Galactic center: a diffuse field with B ${\sim}30\mu G$ with non-thermal magnetized filaments with B ${\sim}100~\mu G$

 $_{\odot}$ halo scale height: \sim 2 kpc, poorly known

Geometry poorly known: dipole-like,
 quadrupole-like, parity wrt Galaxy plane?

Magnetic field in other galaxies

o observations: synchrotron emission of relativistic electrons

 $j(\nu) \propto n_{e,0} \nu^{(1-s)/2} B_{\perp}^{(1+s)/2}$

 $dn_e/d\gamma = n_{e,0} \gamma^{-s}$ if n_e is unknown, one assumes approximate equipartition between electron energy density and magnetic field to estimate B

 $_{\odot}$ all galaxies seem to possess a magnetic field that follows spiral structure, with scale height \sim few kpc (see e.g. Beck 08)

 o at high z, galaxies also appear magnetized: detection of an excess rotation measure in halos of galaxies (MgII absorption systems) Kronberg & Perry 82, Bernet et al. 08

... the magnetic field must be powered up/amplified on $\,\sim$ few Gyr timescales!

Magnetic field in clusters of galaxies

 \circ clusters of galaxies are magnetized with B $\sim \! \mathcal{O}(\mu G)$ in the core, decreasing outwards

 \circ there is no large scale component; the field is tangled on small scales in the core (\sim 10kpc?), on larger scales towards the outskirts...

 $_{\odot}$ B is sufficiently strong to confine protons on a Hubble time up to E \sim 100 GeV

 $rac{R^2}{2D}~pprox~10\,{
m Gyr}$ for Kolmogorov D, R \sim 100kpc

 \Rightarrow diffuse emission from clusters in radio, X and gamma if relativistic populations are present.

 \circ a fraction of clusters exhibit radio halos, with \sim 1 μ Jy/arsec² at 1GHz; detailed origin of energetic electrons still debated...

 \circ B_{cluster} has a strong impact on the transport and thermodynamical properties of the gas...

 \circ B_{cluster} may induce B-polarization of CMB anisotropies (Tashiro et al. 08)...

Magnetic field on super-cluster scales

 a non-ambiguous detection of a diffuse magnetic field in the IGM, bridging a cluster with an extended radio source...

equipartition assumption leads to: $~B\sim 0.3 \mu G$

 \circ +several claims of detection in synchrotron (e.g. Bagchi et al. 02, Brown & Rudnick 08, ...) and a claim for statistical correlation of RM with large scale structure (Lee et al. 09): B \sim 3 10⁻⁸G

with coherence on Mpc scales ??

o other methods for probing very weak IGM magnetic fields < 10^{-15} G : delayed or dispersed pair echo of gamma-ray bursts or blazars: >TeV γ produces e⁻ e⁺ pair, which turns back to high energy photon below threshold (Plaga 1995, Elyiv et al. 09, Takahashi et al. 09)

Kim et al. 89 COMA A+C 326.4 MHz 29°00' 28° 30 DECLINATION $L \sim 2 h_{75}^{-1} Mpc$ 28°00 1253+275 27° 30 54 m 13h 00m 12h 58m 52 m 56 m flux: \sim 800 mJy at 325MHz RIGHT ASCENSION

6

Origin of the Galactic magnetic field

o induction equation for the magnetic field:

 $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B} - \eta \nabla \times \mathbf{B})$

U velocity field, η = resistivity \propto 1/ σ , with σ conductivity.

o ideal MHD: η→ 0, B can be amplified from a seed field; B_{Gal} requires $B_{seed} \gtrsim 10^{-18}$ G on Galactic scales ... origin of the seed field? (e.g. Ruzmaikin et al. 88)

 \rightarrow efficiency the Galactic dynamo?

 \rightarrow can it explain the high z magnetic fields?

\circ in the very early Universe (\ll recombination)?

Attractive scenario, but in general very inefficient due to the small causality length H⁻¹.

 \rightarrow CMB constraints B $\lesssim 10^{\text{-9}}\text{G}$ (Widrow 02)

in the Galaxy, through the ejection of magnetized material by stars?

 \rightarrow consequence of dynamo on a small scale magnetic field?

\circ in the late Universe (\gg recombination): many

possible scenarios at recombination - reionization - Galaxy formation, in general yield very weak seed fields $\lesssim 10^{-12}$ G... no prevalent theory yet...

ex: Langer et al. 03, differential radiation pressure on e-p in inhomogeneous+anisotropic environment (reionization) leads to $B\sim 10^{-12}\,G...$

 \circ seed field sufficient for a Galactic dynamo but without influence on structure formation (impact significant for B $\gtrsim 10^{-10}$ -10⁻⁹ G...?)

o evolution of the seed fields in the IGM: B ∝ $(1+z)^2$ through expansion, but B is amplified during structure formation, B ∝ $(\delta \rho / \rho)^{\alpha}$ with $\alpha \sim$ 0.6 - 1 ⇒ B ≲ 10⁻⁸ G in filaments, too weak to produce detectable emission...

 seeding of the IGM by magnetized material ejected by other galaxies: galactic winds, radiogalaxy lobes...

- \rightarrow origin of the magnetic field in these galaxies?
- \rightarrow is galactic pollution sufficient to account for cluster magnetic fields?

Dolag 06

Expectations for B on \geq Galactic scales

 modern view: the IGM at low z is seeded by magnetized galactic pollution (just as most of Lyman alpha systems are enriched in metals); for early galaxies, some seed field is necessary...

 magnetic field in the IGM is thus expected to be highly inhomogeneous, patchy, with strength up to 10⁻⁸ G in some parts of filaments, much weaker in the voids...

- \rightarrow CR transport in the IGM governed by stochastic interactions with magnetized regions...
- \rightarrow diffuse emission very weak, except around intergalactic shocks (see below)...
- \rightarrow impact on structure formation?

Expectations for B on \geq Galactic scales

 $_{\odot}$ accretion flows produce shocks, which are expected to imply magnetization and particle acceleration: diffuse emission from radio to gamma rays from accelerated electrons (possibly as high as \sim 10% of radio and gamma-ray background, Keshet et al. 03, 04)

 $_{0}$ so far detected: radio relics around clusters of galaxies \sim giant shock waves with R \sim 1Mpc, B as high as 1 μ G?

On the effects of cosmic magnetic fields on large scales (Galactic, clusters, IGM...)

o diffuse emission:

- synchrotron in radio domain, inverse Compton in the X and gamma range: detected or to be soon detected in/around clusters of galaxies
- in less dense IGM, magnetic field is weaker and patchy...
- diffuse emission from accretion shocks could be soon detected in radio

o cosmic ray transport:

- in galaxies/clusters, B governs CR transport
- \rightarrow VHE energy CR escape/modulation?
- X-Galactic CR: unknown non-thermal content of IGM at energies $\lesssim 10^{18}\,eV...$
- transport of UHE cosmic rays on \gtrsim 100Mpc scales governed by stochastic interactions with magnetized regions

o structure formation:

• in general, expected to be weak, except (maybe) inside clusters

