Cosmic rays & gas: Fermi & Planck

Isabelle Grenier (AIM Paris Saclay)

the sky seen by Fermi (> 400 MeV)

answers: Fermi & Planck

🛛 Fermi

- 30 MeV 100 GeV
- $3^{\circ} \rightarrow 9'$ resolution

Planck

- 0.1 3.6 meV
- $33' \rightarrow 5'$ resolution

HI + H2 + H+ + Hdark distribution

- dust emission
- $\pi 0$ and brem. emission
- \Rightarrow ISM mass census
- electron distribution
 - synchrotron radiation
 - IC and brem. emission
 - ▶ \Rightarrow halo size, old loops, local ISRF, B fields...

Galactic electrons

expected spectral variations

🛛 Fermi

 0.1 < E_e < 100 GeV: brem emission in gas (mostly < 0.3 GeV)

Planck

- 1 < E_e < 10 GeV: synchrotron emission in B Fermi
- $E_e \sim \text{few 100 GeV: IC emission in ISRF}$
- E_e < 3 TeV: direct calorimeter measurement

Galprop modelling in plane & halo

Fermi news: harder local spectrum

old loops: hollow or filled ?

local loops

0

how to trace them? morphology changes with v N(HI) front ≠ radio front G \Rightarrow brem \neq synchrotron \neq IC ...

spectral index 408-1420 MHz $(T_h \propto v^{-\beta})$

no haze, but loop I + "bubbles"

WMAP 23GHz polarized intensity convolved with Fermi-LAT PSF for E>300 MeV

arXiv:0912.3478

Galactic nucleons

local HI emissivity

proportional to N(HI) where no CO

local HI emissivity

 ≤ 1 kpc and in Cep+Cas local clouds: consistent with CR spectra at Earth larger nuclear enhancement factor for p-Z and Z-p $\rightarrow \pi^0$ interactions

trip to the outer Galaxy

probing the outer Galaxy

cloud complexes in the 3rd quadrant

careful kinematical separation of the clouds along the lines of sight (HI and CO line fitting + spill-over correction between regions)

cloud complexes in the 2nd quadrant

Abdo et al., '10, ApJ 710, 133

dark molecular gas

adding in the analysis a dust reddening template (Schlegel et al. '98) to account for the nearby dark, presumably H₂, gas

cosmic-ray spectra

- no change in emissivity spectra per H atom up to the Perseus arm $\Rightarrow \sim$ uniform spectra of the 10⁹⁻¹¹ GeV cosmic rays over several kpc
- little arm/interarm contrast
 - \Rightarrow loose coupling with the kpc-scale average ISM surface density

cosmic-ray density gradient

interstellar medium

CO-to-H₂ conversion factor

linear relation between the HI and CO γ -ray emissivities over 12 energy bands > 200 MeV \Rightarrow cosmic rays penetrate rather uniformly to the dense cloud cores, with little

the correlation yields an estimate of the $X_{CO} = q_{CO}/(2q_{HI})$ conversion factor

flat Xco gradient

kpc-average: $X_{CO} \sim 2 \ 10^{20} \ H_2 \ cm^{-2} \ K^{-1} \ km^{-1} \ s$ in the outer Galaxy, rather uniform

P pc-scale sampling: X_{CO} = (0.87 ± 0.05) 10²⁰ in well-resolved Cepheus and Cassiopeia

CO-quiet H₂ gas

dark H₂ gas with little or no CO, but C and C⁺

samedi 12 juin 2010

dark H₂ gas

3rdQ

excess dust from SFD'99

2ndQ

9

3rd quadrant

E(B-V) - a.N(HI) - b.W(CO)

dark H₂ gas

Abdo et al., '10, ApJ 710, 133

	l	b	$d \; (\mathrm{kpc})$	$M_{\rm CO}$	$M_{\rm vir}(r_A)$	$M_{ m vir}(\langle r angle)$	M_{dark}
Cepheus	[100, 117]	[6, 22]	0.3^{a}	$0.37 {\pm} 0.02$	0.687	0.903	$0.160 {\pm} 0.011$
Polaris	[117, 129]	[18, 30]	0.25^{b}	$0.052 {\pm} 0.003$	0.208	0.159	$0.031 {\pm} 0.002$
Cassiopeia	[117, 145]	[2, 18]	0.3^{a}	$0.61 {\pm} 0.03$	0.893	1.062	$0.34{\pm}0.02$
Gould Belt	[100, 145]	[-15, 30]	0.3	$1.47 {\pm} 0.08$			
NGC 7538	[107, 115]	[-5, 5]	$2.65^{\rm c}$	20 ± 2			
NGC 281	[120, 125]	[-9, -5]	$3.0^{\rm d}$	$0.79 {\pm} 0.08$	1.205	1.047	
Perseus arm	[100, 145]	[-10, 10]	3.0	57 ± 6			

dark gas

samedi 12 juin 2010

much more soon...

