

Preparation to the CMB Planck analysis: contamination due to the polarized galactic emission

L. Fauvet, J.F. Macías-Pérez

Polarized foregrounds

3D model of the galaxy: optimization

Expected constraints with Planck simulations

Contamination of the CMB data

[LF, Macías-Pérez et al, submitted to A&A, astro-ph: 1003.4405]

PCHE meeting, 08/06/2010

2

polarized foregrounds

PCHE meeting, 08/06/2010

Galactic polarized foregrounds

<u>synchrotron emission (</u>408 MHz) [Haslam et al, 1982]

<u>thermal dust emission (</u>353 GHz) [Finkbeiner et al, 1999]

5000

3D model of the Galaxy

physical model of polarized foreground emissions depends on:

the shape of the galactic magnetic field :
 regular component : MLS or ASS
 free parameter : pitch angle [Han et al, 2006]

non regular component *[Han et al, 2004]* free parameter: A_{turb}

• the distribution of relativistic electrons , free parameter: h_r

[Page et al, 2007; Sun et al, 2008]

the distribution of dust grains

[Page et al, 2007; Paladini et al, 2007]

<u>3D model of the Galaxy</u>

integrating along the line of sight

<u>synchrotron emission</u>

$$I = \int dI = \int n_e \left(B_l^2 + B_t^2 \right)$$
$$Q_{ms} = \int dI \cos(2\gamma) p_s$$
$$U_{ms} = \int dI \sin(2\gamma) p_s$$

with:

 $p_s = \frac{s+1}{s+7/3}$ polarization fraction related to the cosmic ray energy dimension slope $s: p_s = 0.75$

 $\gamma = \frac{1}{2} \arctan\left(\frac{2B_l \cdot B_t}{B_l^2 - B_t^2}\right)$ idem for thermal dust

• extrapolation at various μ : β_{e}

• thermal dust emission

$$I_{md} = \int n_d \cdot ds$$
$$Q_{md} = \int dI \cos(2\gamma) \sin^2(\alpha) f_{\text{norm}} p_d$$
$$U_{md} = \int dI \sin(2\gamma) \sin^2(\alpha) f_{\text{norm}} p_d$$

 p_d : the polarization fraction = 0.1 [Ponthieu et al, 2005]

$$\sin^2(\alpha) = \sqrt{\frac{1 - B_t^2}{B_{\rm norm}}}$$

extrapolation at various μ : β_d

6

3D model of the Galaxy : optimisation

3D model of the Galaxy: optimisation

Haslam data, MLS field for different values of A_{turb}

3D model of the Galaxy : optimisation

WMAP 5 years data + synchrotron emission (from green to red) (MLS model of magnetic field and exponnential distribution of relativistic electrons)

PCHE meeting, 08/06/2010

9

3D model of the Galaxy : optimisation

galactic profiles for various values of the latitudes the ARCHEOPS data and our model of thermal dust emission (MLS model of magnetic field and exponential distribution of dust grains)

L. Fauvet

PCHE meeting, 08/06/2010

MLS field

for the synchrotron emission

A_{turb} < 0.25 B_{reg} p = - 30 ± 20 deg h_r < 15 kpc β_s = -3.3 ± 0.1

for the dust thermal emission

Expected constraints on the galactic magnetic field with Planck

[LF, Macías-Pérez et al, to be submitted to A&A]

PCHE meeting, 08/06/2010

16

Expected constraints with Planck

 simulations of Q and U map of Planck and WMAP 8-years data for all polarized channels :

$$\begin{pmatrix} Q^{\nu} \\ U^{\nu} \end{pmatrix} = \begin{pmatrix} Q^{\nu}_{d} \\ U^{\nu}_{d} \end{pmatrix} + \begin{pmatrix} Q^{\nu}_{s} \\ U^{\nu}_{s} \end{pmatrix} + \begin{pmatrix} Q^{\nu}_{N} \\ U^{\nu}_{N} \end{pmatrix} + C$$

• 4 types of simulations :

-> with or without turbulent component of the magnetic fields ($A_{turb} = 0.25$)

- -> with spectral index spatialy constants ($\beta_s = -3.0$, $\beta_d = 1.4$) or variables
- noise : gaussian random [Planck Bluebook, 2004; Hinshaw et al, 2010]
 CMB : model ACDM [Komatsu et al, 2010]

[Gold et al, 2010] [Macias-Pérez, LF et al, in preparation] PCHE meeting, 08/06/2010

Expected constraints with Planck

250 5 0 < l < 300 < l < 30150 0 100 -550 -10 10 150 30 < l < 6030 < l < 605 100 0 -5 50 -10 108 10 80 60 < l < 9060 < l < 905 60 40 20 -580 90 < l < 120μKr 90 < l < 120 μK_{RJ} 60 40 D ð 20 100 80 120 < l < 180120 < l < 180 60 40 20 25 20 180 < l < 230180 < l < 23015 10 50 2.0 230 < 1 < 270 1.5 120 100 80 60 40 270 < l < 330279 < 1 < zğ 300 10 330 < l < 360330 < l < 360200 0 100 -10 0 90. 72. 54. 36. 18. о. -18. -36. -54. -72. -90. 90. 72. 54. 36. 18. о. -18. -36. -54. -72. -90. b (deg) b (deg)

MLS field for different values of p

353 GHz

Expected constraints with Planck

simulation	$\operatorname{component}$	β_{simu}	A_{turb}	p(deg)	h_r^e	h_r^d	β_s	eta_d
simu 1	Р	cst	< 0.25	-30^{+10}_{-20}	< 17	< 15	$-3.0\substack{+0.1\\-0.2}$	$1.4^{+0.6}_{-0.3}$
		var	< 0.25	-30^{+10}_{-20}	< 17	< 17	$-3.0\substack{+0.1\\-0.2}$	$1.3^{+0.7}_{-0.2}$
	P+W	cst	< 0.125	-30 ± 10	< 2	< 17	-3.0 ± 0.1	$1.4^{+0.7}_{-0.2}$
		var	< 0.125	-30 ± 10	< 2	< 17	-3.0 ± 0.1	$1.4^{+0.7}_{-0.2}$
simu 2	Р	cst	$0.125^{+0.875}_{-0.125}$	-30^{+20}_{-30}	< 17	< 17	$-3.1^{+0.1}_{-0.8}$	$1.5^{+1}_{-0.2}$
		var	$0.125^{+0.750}_{-0.125}$	-30^{+20}_{-30}	< 17	< 17	$-3.1^{+0.1}_{-0.8}$	$1.4^{+1.0}_{-0.2}$
	P+W	cst	0.25 ± 0.125	-30 ± 10	< 2	< 17	-3.0 ± 0.1	$1.4^{+0.9}_{-0.2}$
		var	0.25 ± 0.125	-30 ± 10	< 2	< 17	-3.0 ± 0.1	$1.4^{+0.98}_{-0.2}$

• strong constraints expected on p, β_s and β_d

- no constraints expected on h^e_r and h^d_r
- adding WMAP data improve the constraints

Contamination of the CMB data

20

PCHE meeting, 08/06/2010

Contamination of the CMB data: galactic cut

from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red: CMB simulations, r=0.1, ACDM [Komatsu et al, 2010]

21

PCHE meeting, 08/06/2010

Contamination of the CMB data: dust masks

	P06	N°1	N°2	N°3
$\Delta C_{\ell}^{sampling} / \Delta C_{\ell}^{cosmic}$	1.37	1.37	1.7	2.7

PCHE meeting, 08/06/2010

22

Contamination of the CMB data

from black to blue : model of galactic emission using masks N°1, N°2, N°3 Orange : using PO6 mask red : simulation of CMB, r=0.1, ΛCDM [Komastu et al, 2010]

PCHE meeting, 08/06/2010

23

100 GHz

Conclusions

coherent models for the diffuse polarized galactic emissions

compared to existing data

 used the best fit model to estimate the foregrounds contamination to the CMB Planck data

• implemented a method to constraint the models of diffuse galactic emissions using Planck data.

 masks to minimize the dust emission in the final power spectra.

The PLANCK mission

Planck : ESA mission dedicated to the CMB anisotropies measurement

• large frequency range :

LFI : 30, 44, 70 GHz HFI : 100, 143, 217, 353, 545, 857 GHz

full-sky coverage and angular resolution of 5'

• sensitivity limited by the ability to subtract astrophysical foregrounds ~ 2.10^{-6} K

 Ultimate measurement of the CMB temperature anisotropies
 Best possible measurement of polarization with currently available technologies

polarized foregrounds

from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.1

27

expected CMB measurements with Planck

[PLANCK Bluebook,, the PLANCK collaboration, 2005]

L. Fauvet

for the synchrotron :

$$dI_{\nu}^{sync} = \epsilon^{sync}(\nu) \quad n_{\text{CRE}}(\mathbf{n}, z)$$
$$\cdot \left(B_l(\mathbf{n}, z)^2 + B_t(\mathbf{n}, z)^2\right)^{(s+1)/4} dz$$

$$I_{\nu}^{sync}(\mathbf{n}) = \int dI_{\nu}^{sync},$$
$$Q_{\nu}^{sync}(\mathbf{n}) = \int dI_{\nu}^{sync} \cos(2\gamma(\mathbf{n}, z)) \ p^{sync},$$
$$U_{\nu}^{sync}(\mathbf{n}) = \int dI_{\nu}^{sync} \sin(2\gamma(\mathbf{n}, z)) \ p^{sync}.$$

for the thermal dust

$$dI_{\nu}^{dust}(\mathbf{n}) = \epsilon^{dust}(\nu) \quad n_{dust}(\mathbf{n}, z) \ dz$$

$$\begin{split} I_{\nu}^{dust}(\mathbf{n}) &= \int \mathrm{d}I_{\nu}^{dust}, \\ Q_{\nu}^{dust}(\mathbf{n}) &= \int \mathrm{d}I_{\nu}^{dust}p^{dust}\cos(2\gamma(\mathbf{n},z)) \\ & .f_{\mathrm{g}}(\mathbf{n},z)f_{\mathrm{ma}}(\mathbf{n},z), \\ U_{\nu}^{dust}(\mathbf{n}) &= \int \mathrm{d}I_{\nu}^{dust}p^{dust}\sin(2\gamma(\mathbf{n},z)) \\ & .f_{\mathrm{g}}(\mathbf{n},z)f_{\mathrm{ma}}(\mathbf{n},z). \end{split}$$

$$p^{sync} = \frac{s+1}{s+7/3}$$

local angle of polarization: $\gamma(\mathbf{n}, s) = \frac{1}{2} \arctan\left(\frac{2B_l(\mathbf{n}, z) \cdot B_t(\mathbf{n}, z)}{B_l^2(\mathbf{n}, z) - B_t^2(\mathbf{n}, z)}\right)$

$$\begin{aligned} Q_s &= I_{\text{Has}} \left(\frac{\nu}{0.408}\right)^{\beta_s} \frac{Q_{\nu}^{sync}}{I_{\nu}^{sync}}, \\ U_s &= I_{\text{Has}} \left(\frac{\nu}{0.408}\right)^{\beta_s} \frac{U_{\nu}^{sync}}{I_{\nu}^{sync}}, \end{aligned}$$

$$\begin{aligned} Q_d \ &= \ I_{sfd} \frac{Q_{\nu}^{dust}}{I_{\nu}^{dust}}, \\ U_d \ &= \ I_{sfd} \frac{U_{\nu}^{dust}}{I_{\nu}^{dust}}, \end{aligned}$$

MLS

$$\begin{aligned} \mathbf{B}(\mathbf{r}) &= B_{reg}(\mathbf{r})[\cos(\phi + \beta)\ln\left(\frac{r}{r_0}\right)\sin(p)\cos(\chi)\cdot\mathbf{u_r} \\ &-\cos(\phi + \beta)\ln\left(\frac{r}{r_0}\right)\cos(p)\cos(\chi)\cdot\mathbf{u_\phi} \\ &+\sin(\chi)\cdot\mathbf{u_z}], \end{aligned}$$

 $\beta = 1/\tan(p)$

ASS [Sun et al, 2008]

 $\begin{array}{lll} B^{D}_{r} &=& D_{1}(r,\Phi,z)D_{2}(r,\Phi,z)sin(p)\\ B^{D}_{\Phi} &=& -D_{1}(r,\Phi,z)D_{2}(r,\Phi,z)cos(p)\\ B^{D}_{z} &=& 0 \end{array}$

$$D_1(r,z) = \begin{cases} B_0 \ exp(\frac{r-R_{\odot}}{R_0} - \frac{|z|}{z_0}) & r > R_c \\ B_c & r \le R_c \end{cases} \qquad D_2(r) = \begin{cases} +1 & r > 7.5 \\ -1 & 6 < r \le 7.5 \\ +1 & 5 < r \le 6 \\ -1 & r < 5 \end{cases}$$

expected constraints with Planck

143 GHz

Data	Magnetic field model	p(deg)	A_{turb}	$n_{\text{CRE},r}$	β_s	χ^2_{min}
408 MHz	MLS	$-20.0^{+60.0}_{-50.0}$	< 1.00 (95.4 % CL)	4^{+16}_{-3}	Ø	3.58
	ASS	$-10.0^{+80.0}_{-70.0}$	< 1.0 (95.4 % CL)	5^{+15}_{-3}	Ø	4.65
WMAP 23 GHz	MLS	$-30.0^{+40.0}_{-30.0}$	<1.25 (95.4 % CL)	< 20 (95.4 % CL)	$-3.4^{+0.1}_{-0.8}$	5.72
	ASS	$-40.0^{+60.0}_{-30.0}$	<1.5 (95.4 % CL)	$3^{+17}_{-2}(95.4\% \text{ CL})$	$-3.4^{+0.1}_{-0.8}$	7.62
Archeops 353 GHz	MLS	-20^{+80}_{-50}	< 2.25(95.4% CL)	Ø	Ø	1.98
	ASS	60.0^{+20}_{-40}	$0.25^{+2.0}_{-0.25}$	Ø	Ø	1.72
All	MLS	-20^{+80}_{-50}	< 2.25(95.4% CL)	Ø	Ø	1.98
	ASS	60.0^{+20}_{-40}	$0.25^{+2.0}_{-0.25}$	Ø	Ø	1.72

Best fit parameters

<u>3D model of the galaxy</u>

turbulente component

non regular field at all scales same intensity as the regular component Kolmogorov spectrum *[Han et al, 2006]*

 $B_{tot} = B_{reg}(r) + A_{turb}B_{turb}(r)$

 $B_{turb} = (8\mu_0 E_B)^{1/2}$ with $\mu_0 = 4\pi . 10^{-7}$ H.m⁻¹

 A_{turb} (dimensionless) : normalisation of the turbulent component

 3D gaussian simulation with used a power spectrum

impact on the CMB data

red : synchrotron emission model
blue : thermal dust emission model
black: 3 years ofWMAP and ARCHEOPS data

The CMB : current results

[Nolta et al, 2008]

Cosmology Workshop09, 12/11/2009

the CMB : Planck perspectives

 \bullet upper limit of r \leq 0.05 if no primordial tensor modes

- detect tensor mode if r ~ 0.03
 [Efstathiou et al, 2009]
- constraints : n_s ~ 0.1 & r ~ 0.05

discriminate inflation models and other models

The CMB : current results

[Komatsu et al, 2008]

Cosmology Workshop09, 12/11/2009

40

The PLANCK schedule

- launched the 14th of May 2009 from Kourou
- travelled to L2 point and cooling until end of June 2009
- final checks until 15th of August

NOW : 14 months of operations for 2 all-sky surveys

First light of

Planck

41

The Planck mission : scientific objectifs

Primary anisotropies:

- cosmological parameters
- physics of the Early Universe
- non-gaussianity

Secondary anisotropies

- ISW
- gravitational lensing
- reionisation
- galaxy clusters

Extragalactic sources :

- radio sources
- dusty galaxies and their contaminants

Galactic & Solar systems :

- galactic magnetic field & ISM
- planets and asteroides ...

["Planck bluebook", the Planck collaboration, 2005]

Formation de la polarisation

(Kosowsky et al (1994))

43

Lauranne Fauvet 28/06/2007

from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3

contamination of the CMB data

100 GHz EE BB $\mathsf{T}\mathsf{T}$ 1000.0 10 1(1+1)Cf2/2m http: (2+1)Ce^{EE}/2m µKana² 100.0 (2+1)CPB/2m NKon 10-10.0 10-1.6 10-10 10-10-12 0.1 10 10 10 100 10 100 100 TE TB EB 0.010 0.0002 1.5 0.000 0.000 1.0 (1+1)C22/24 14KCUB 0.010 0.0002 Ľ (1+1)Cr³³/27 (1+1)Cra/27 -0.020 -0.0004 0.5 -0.08 -0.0006 0.0 -0.040E -0.0008 -0.050-0.00110 100 10 100 10 100 Multipole I Multipole I Multipole &

from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3

45

contamination of the CMB data

from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3

Paramètres de Stokes

I : intensité

Q,U : polarisation linéaire (dépendants du choix du référentiel).

V : polarisation circulaire (absente du CMB).

Gradient de vitesse non nul dans le repère de l'e →
 quadrupôle.
 Produit du mode

Lauranne Fauvet

28/06/2007

The Planck mission

. . .

$$\phi = \phi_{\scriptscriptstyle L} + f_{\scriptscriptstyle NL} \phi_{\scriptscriptstyle L}{}^2$$

 $\phi \sim$: gaussian, linear curvature perturbation on the matter dominating era [Salopek & Bond, 1990]

$$\begin{split} f_{NL} &\sim 0.05 \text{ canonical inflation [Maldacena,2003 ; Acquaviva et al, 2003]} \\ f_{NL} &\sim 0.1\text{-}100 \text{ higher order derivatives (biblio ...)} \\ f_{NL} &> 10 \text{ curvaton models [Lyth, Ungarelly et Wands, 2003]} \\ f_{NL} &\sim 100 : \text{ghost inflation [Arkani-Hamed et al, 2004]} \end{split}$$

l

the CMB

$$\left. \frac{\ell(\ell+1)}{2\pi} C_{\ell}^{BB} \right|_{\ell=\ell_{\rm pic}} \simeq 0.024^2 \left(\frac{E_{\rm Inf}}{10^{16}} \right)^4 \ \mu {\rm K}^2 \label{eq:ellipsi}$$

50

[Zaldarriaga , 2002]

the CMB: polarization

[Kosowsky, 1992]

Cosmology Workshop09, 12/11/2009

<u>3D model of the galaxy</u>

turbulente component

non regular field at all scales same intensity as the regular component Kolmogorov spectrum *[Han et al, 2006]*

 $B_{tot} = B_{reg}(r) + A_{turb}B_{turb}(r)$

 $B_{turb} = (8\mu_0 E_B)^{1/2}$ with $\mu_0 = 4\pi . 10^{-7}$ H.m⁻¹

 A_{turb} (dimensionless) : normalisation of the turbulent component

 3D gaussian simulation with used a power spectrum

Cosmological parameters

tensor-scalar ratio constraint by WMAP 5 and 3 years (at 95% et 68% C.L)

The Planck mission

Simplified analysis (isotropic noise, using 70, 100, 143 and 217 GHz Planck data) : r=0.05 and uper limit at r = 0.03 95%C.L. for lower values

Upper limit of $r \le 0.05$ if no primordial tensor mode Detect tensor mode if $r \sim 0.1$ G.Efstathiou ...

inflation

$$\begin{array}{rcl} \rho & = & \frac{1}{2} \dot{\phi}^2 + \frac{(\nabla \phi)^2}{2a^2} + V(\phi), \\ p & = & \frac{1}{2} \dot{\phi}^2 - \frac{(\nabla \phi)^2}{6a^2} - V(\phi). \end{array}$$

$$H^{2} = \frac{8\pi G}{3}\rho \qquad (\acute{e}$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\nabla^{2}\phi}{a^{2}} + V' = 0 \qquad (\acute{e}$$

(équation de Friedmann) (équation de Klein-Gordon)

slow-roll

$$\left\{ \begin{array}{ll} H^2 \simeq \frac{8\pi G}{3} V(\phi) & \qquad \frac{1}{2} \dot{\phi}^2 \ll V \\ \\ 3H \dot{\phi} + V' \simeq 0 & \qquad \ddot{\phi} \ll 3H \phi \end{array} \right.$$

$$(Q \pm iU)(\mathbf{n}) = \sum_{\ell,m} a_{\pm 2\ell m} \cdot_{\pm 2} Y_{\ell m}(\mathbf{n})$$

$$a^E_{\ell m} \equiv -rac{a_{2\ell m}+a_{-2\ell m}}{2}$$

 $a^E_{\ell m} \equiv irac{a_{2\ell m}-a_{-2\ell m}}{2}$

$$E(\mathbf{n}) \equiv \sum_{\ell,m} a^{E}_{\ell m} Y_{\ell m}$$

 $B(\mathbf{n}) \equiv \sum_{\ell,m} a^{B}_{\ell m} Y_{\ell m}$

$$\bar{C}_{\ell}^{XX'} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m}^X a_{\ell m}^{X'\star},$$

The Planck mission: cooling chain

- 1.5 m telescope
- LFI HEMTS to 18K
- HFI bolometers to 0.1K
- **40K** : radiative cooling
- **18K** : H_2 sorption cooler (J-T)
- **4K** : He mechanical pump (J-T)

["Planck bluebook", the Planck collaboration, 2005]

1.6K : J-T expansion

0.1K: ³He/⁴He dilution

Cosmology Workshop09, 12/11/2009

58