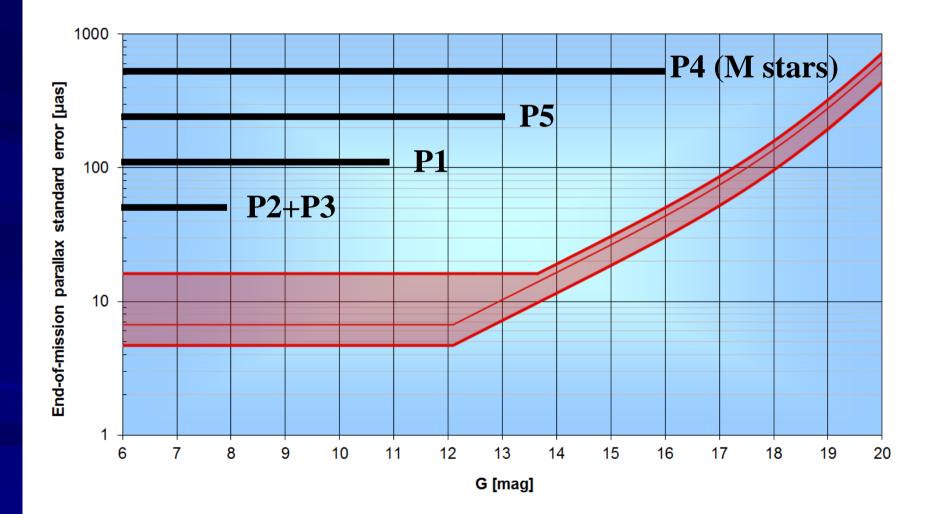
Synthesis of WG2 'Non-seismic diagnostics and model atmospheres'

Question: what accuracy in [Fe/H] and chemical abundances is required?

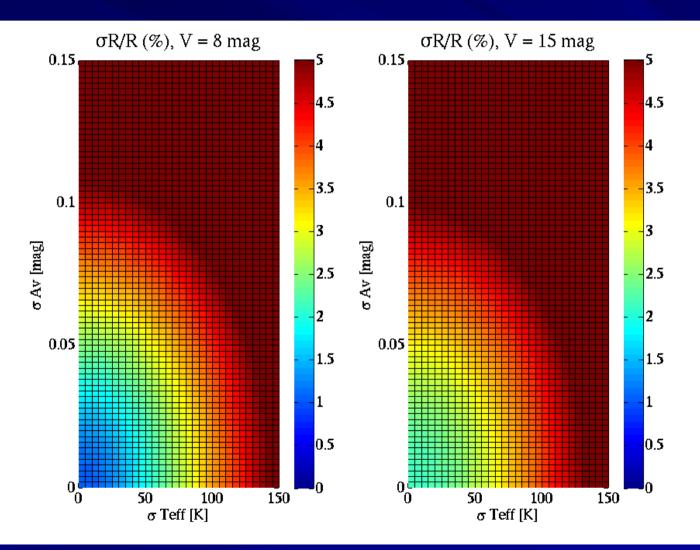
Outputs


Stellar radii to ~2% for stars in P1-P3 sample Teff to ~1% [Fe/H] and [X/Fe] to 0.1 dex at the very least Grid of model atmospheres Grid of limb- and gravity-darkening coefficients

Question: what should be the parameter space covered by the grid of atmosphere models? How dense should be the grid?

Will we have good parallaxes for all stars in P1-P3 sample by PLATO launch?

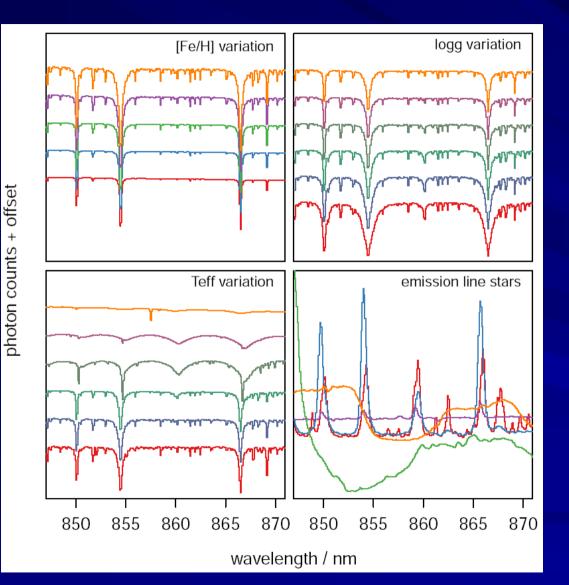
Astrometry from Gaia



Can Gaia provide an accuracy of 2% in stellar (i.e., planetary) radii?

If we have a good handle on Teff and reddening

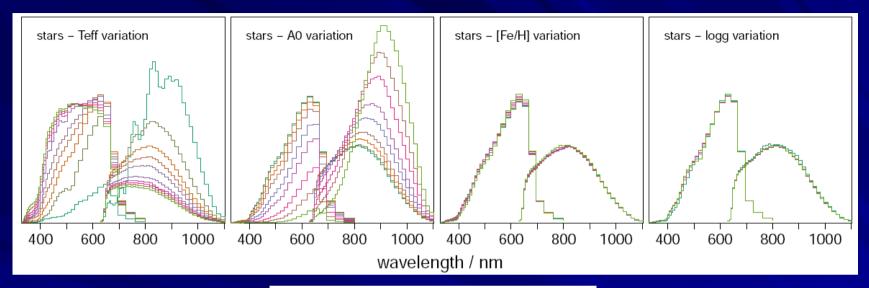
 $M_V = V + 5 + 5 \log \pi - A_V$ $\log(L/L_{\odot}) = (M_{\text{bol},\odot} - M_V - BC)/2.5$ $R = (L/4 \pi \sigma T_{\text{eff}}^4)^{1/2}$


 $\sigma BC = 0.02 \text{ mag} \text{ assumed}$

 $\sigma_{\pi} = 15$ and 24 µas assumed for V = 8 and 15 mag, respectively

Will Gaia provide these quantities with a sufficient accuracy?

TeffXReddening✓Chemical abundancesX


GSP-Spec performance (internal rms errors)

	G _{RVS} mag	T _{eff} K	log g dex	[M/H] dex
Thin disk dwarfs	10	60	0.08	0.09
	13	70	0.12	0.09
	15	270	0.39	0.30
Thick disk dwarfs	10	70	0.11	0.09
	13	110	0.17	0.12
	15	350	0.43	0.29
Halo giants	10	70	0.17	0.15
	13	90	0.28	0.17
	15	340	0.86	0.38

Bailer-Jones et al. (2013)

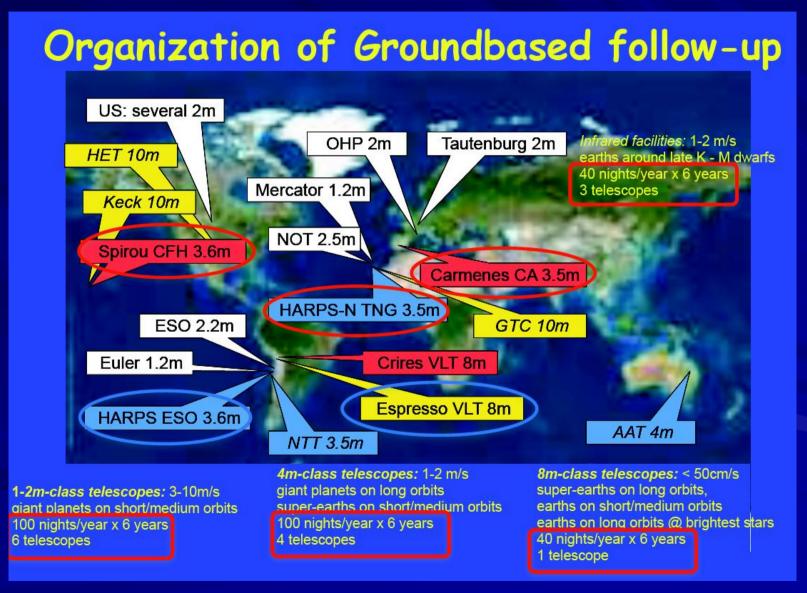
GSP-Phot performance (internal rms errors)

	G mag	T _{eff} K	A_0 mag	log <i>g</i> dex	[Fe/H] dex
A stars	9	340	0.08	0.43	0.86
	15	260	0.06	0.38	0.93
	19	400	0.15	0.51	0.74
F stars	9	<mark>150</mark>	0.06	0.36	0.36
	15	170	0.07	0.38	0.33
	19	630	0.35	0.37	0.60
G stars	9	140	0.07	0.31	0.14
	15	140	0.07	0.22	0.16
	19	450	0.33	0.45	0.65
K stars	9	100	0.09	0.26	0.19
	15	90	0.08	0.26	0.21
	19	230	0.23	0.36	0.48
M stars	9	60	0.13	0.15	0.21
	15	70	0.14	0.29	0.25
	19	90	0.13	0.17	0.29

Bailer-Jones et al. (2013)

Can photometry (IRFM) provide Teff with a sufficient accuracy?

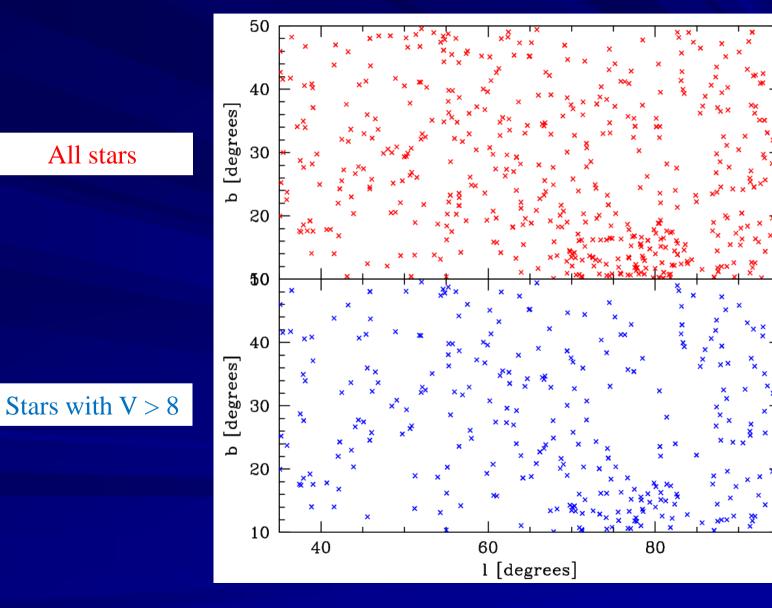
Very sensitive to reddening which will be fairly poorly constrained for most stars in P1 with *V*~10-11 mag


Can high-resolution spectroscopy provide these quantities with a sufficient accuracy?

Teff Reddening

Chemical abundances

High-resolution spectra from follow-up



Courtesy S. Udry

Courtesy S. Udry

High-resolution spectra from archives

Stars in SOPHIE archives for one of the long-pointing PLATO fields

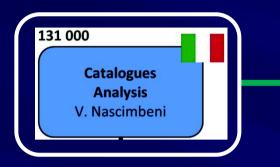
Spectroscopic data from large-scale spectroscopic surveys

Name	R	Number of	Magnitude	Facility	Status
		stars	\mathbf{range}		
RAVE	7500	${\sim}5{ imes}10^5$	V < 12	AAO	Completed
SDSS-SEGUE	2000	$\times 10^5$	g < 19	APO	Completed
$\operatorname{Gaia}/\operatorname{RVS}$	11500	$ imes 10^7$	V < 14	Gaia	Ongoing
LAMOST	1800	$\times 10^{6}$	V < 19	Xinglong station	Ongoing
GALAH	28000	$\sim \! 10^6$	12 < V < 14	AAO	Ongoing
Gaia-ESO	20000	$\sim \! 10^5$	V < 19	ESO	Ongoing
WEAVE	20000	$\times 10^5$	V < 18	ING	Starting ${\sim}2017$
4MOST	20000	${\sim}1.5{\times}10^6$	V < 15	ESO	Starting ${\sim}2020$

Medium-resolution surveys

Conclusion

High- or medium-resolution spectroscopy is probably the most promising way to estimate Teff (and reddening?) and the only one for the chemical abundances


Accuracy of ~50 K in Teff and ~0.05 dex in [Fe/H] already achievable for solar analogues through differential analyses with respect to the Sun

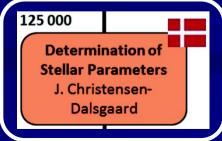
Problem:

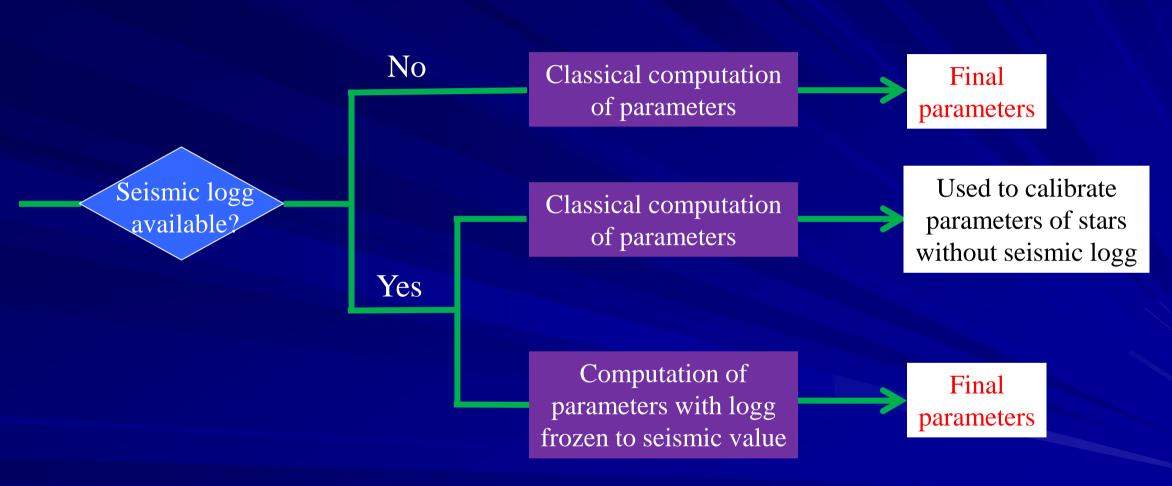
Only a small fraction of stars in P1 will have data from archives and FU + inhomogeneous data

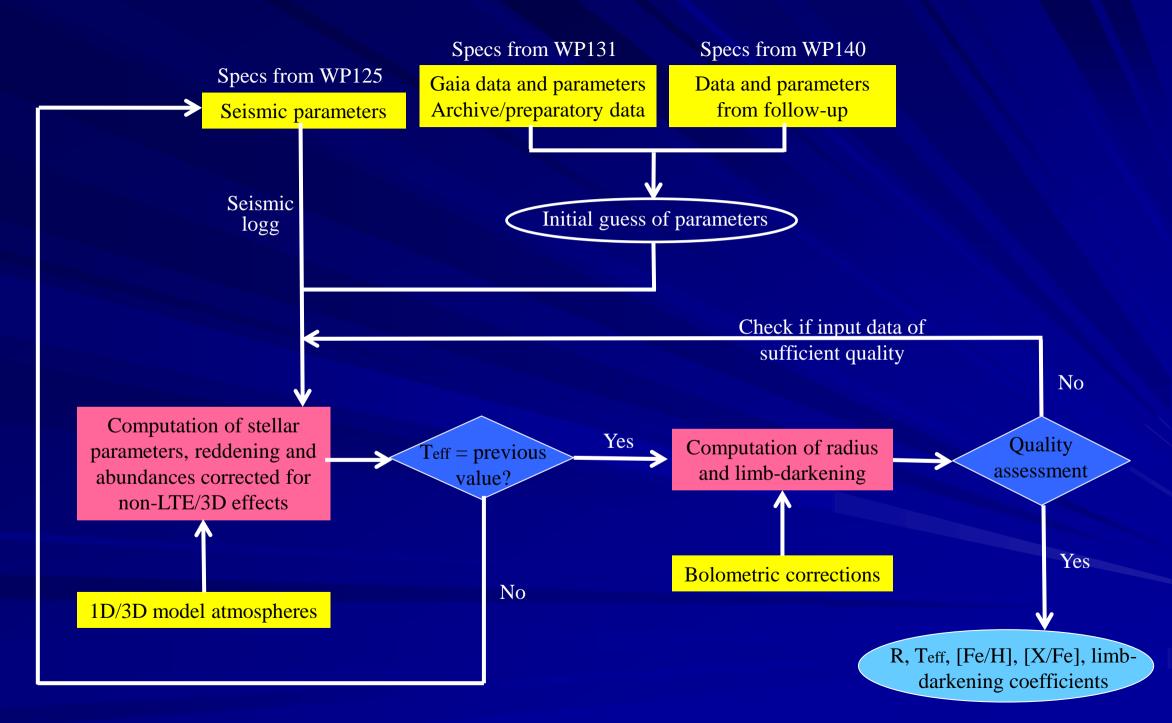
Possible solution:

Preparatory observations (through WP131330) and/or agreement with ongoing or future large-scale spectroscopic surveys (e.g., 4MOST)

WP131100: Gaia parallaxes WP131200-131300: Archive data (spectroscopic, photometric, ...) WP131330: Preparatory observations?


WP131100-131200-131300: First guess of parameters from Gaia and existing catalogues


WP146000: Follow-up data (starting from operations phase)


WP146000: Rough parameters (starting from operations phase)

122 000 Non-Seismic Diagnostics and Model Atmospheres T. Morel

WP125000: Seismic gravities (starting from operations phase)

Benchmarks stars

We came to the conclusion that benchmark stars are essential for: Testing the reliability of the model atmospheres Assessing the accuracy of the parameters

Proposal to create a dedicated subWP within WP122000 Led by Ulrike Heiter (?) People from the interferometric community more than welcome Work to be done in the next few weeks/months

Definition of a set of benchmark stars

Example: β Hydri (G0 IV) Teff=5872±44 K logg=3.98±0.02 dex [Fe/H]=-0.04±0.02

Accuracy assessments