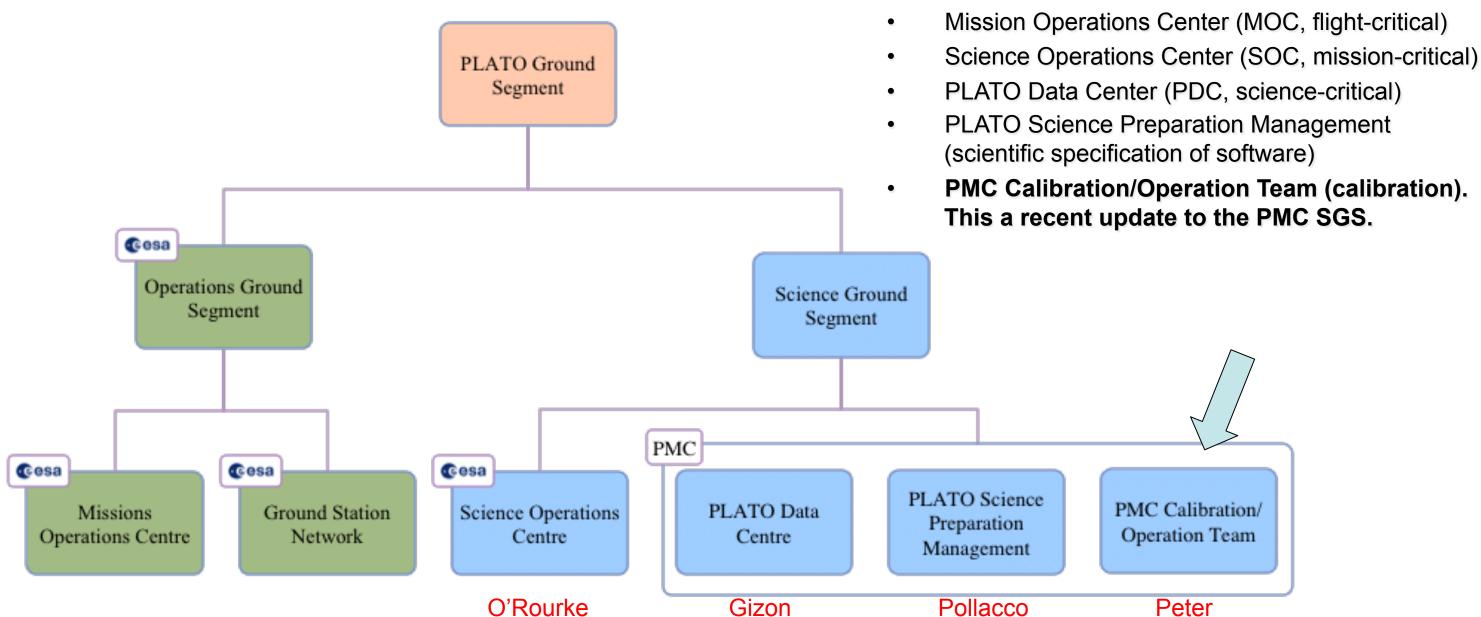
PLATO DATA CENTRE


Laurent Gizon and PDC Office

PLATO Stellar Science Meeting, 9-10 April 2015, Paris

New SIP release! SGS PDCR status and feedback PDC Office Ongoing work

PLATO Ground Segment (PGS)

The PDC is in charge of the calibration and processing of the PLATO observations. The PDC delivers the final PLATO science Data Products to the SOC.

PSPM provides the scientific specification of the algorithms that run at the PDC. PMC scientists scientifically validate L2 data (esp. DP6) using PDC tools

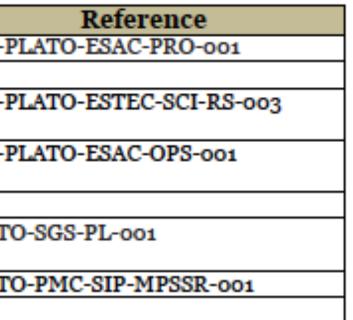
Peter

New SIP Release of March 12

Max Planck Institute for Solar System Research Goettingen

PLATO MISSION CONSORTIUM SCIENCE IMPLEMENTATION PLAN

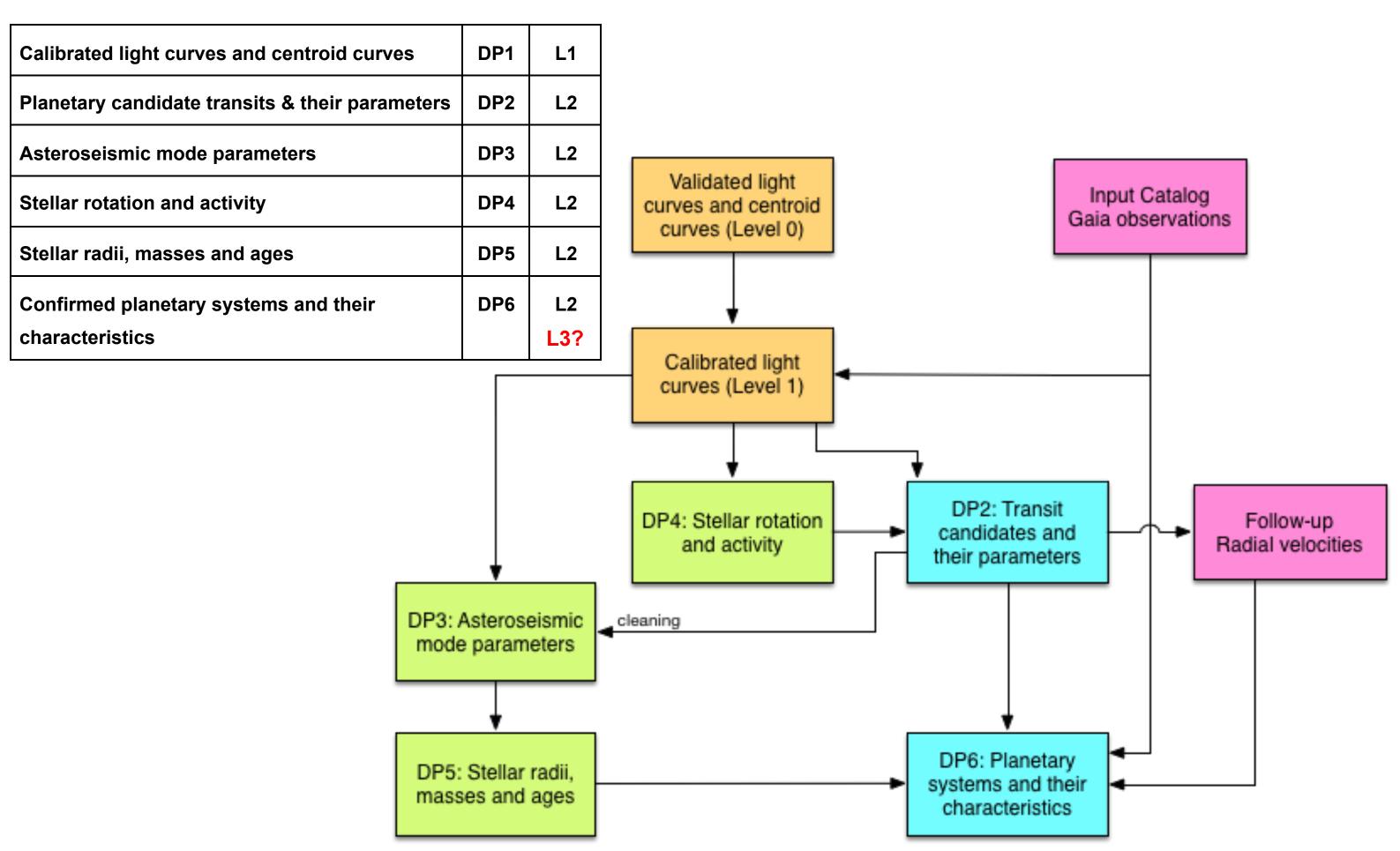
-	Name & Society	Date	Signature
Prepared by	Laurent Gizon PLATO Data Processing Manager Don Pollacco PSPM Coordinator	11 th Mar 2015	
Approved by	Heike Rauer PLATO Mission Consortium Lead	11 th Mar 2015	
Authorized by	Laurent Gizon PLATO Data Processing Manager Don Pollacco PSPM Coordinator Heike Rauer PLATO Mission Consortium Lead	11 th Mar 2015	

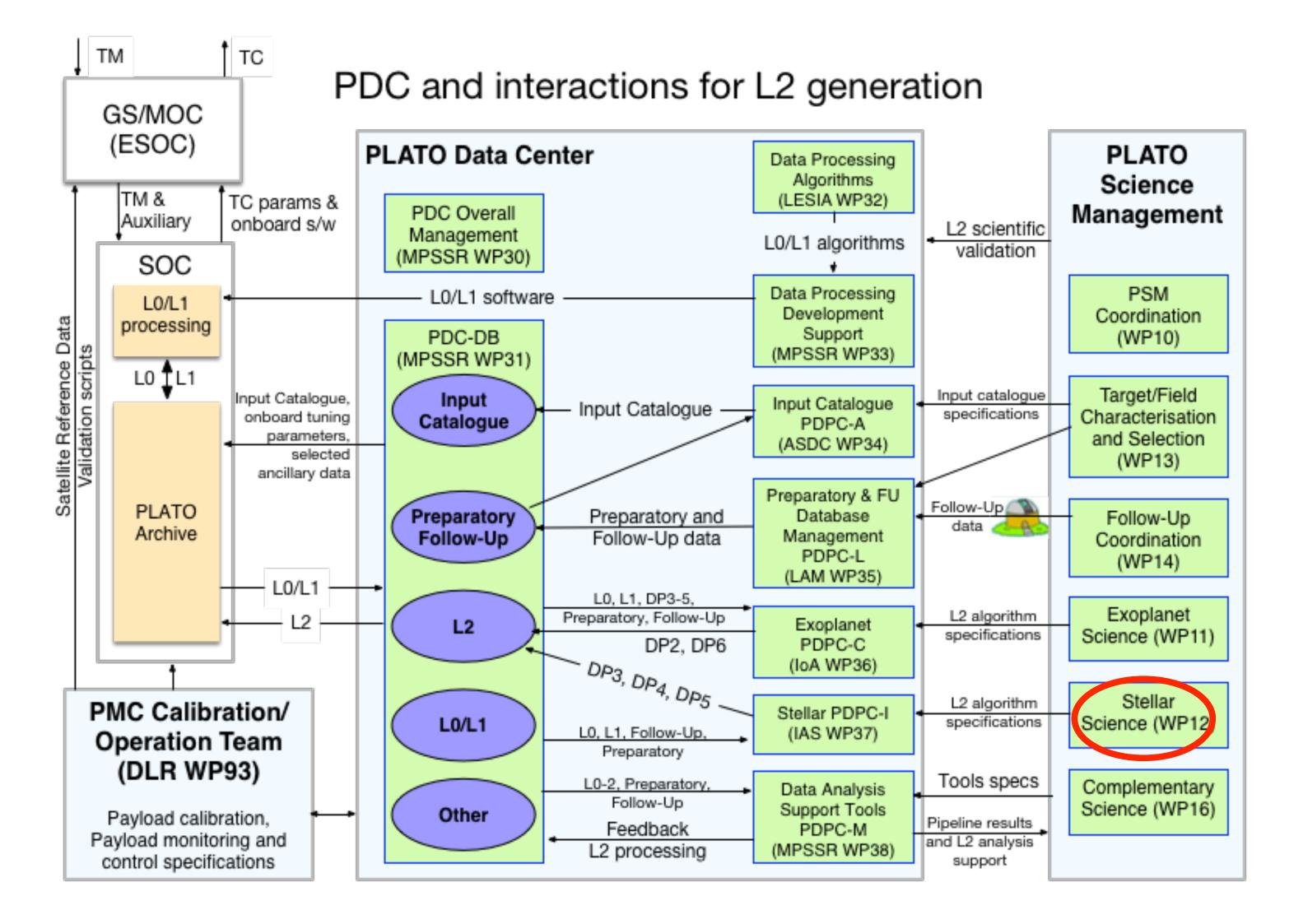

ARCHIVING: Public x Limited Diffusion DOCUMENT HANDLED IN CONFIGURATION: No

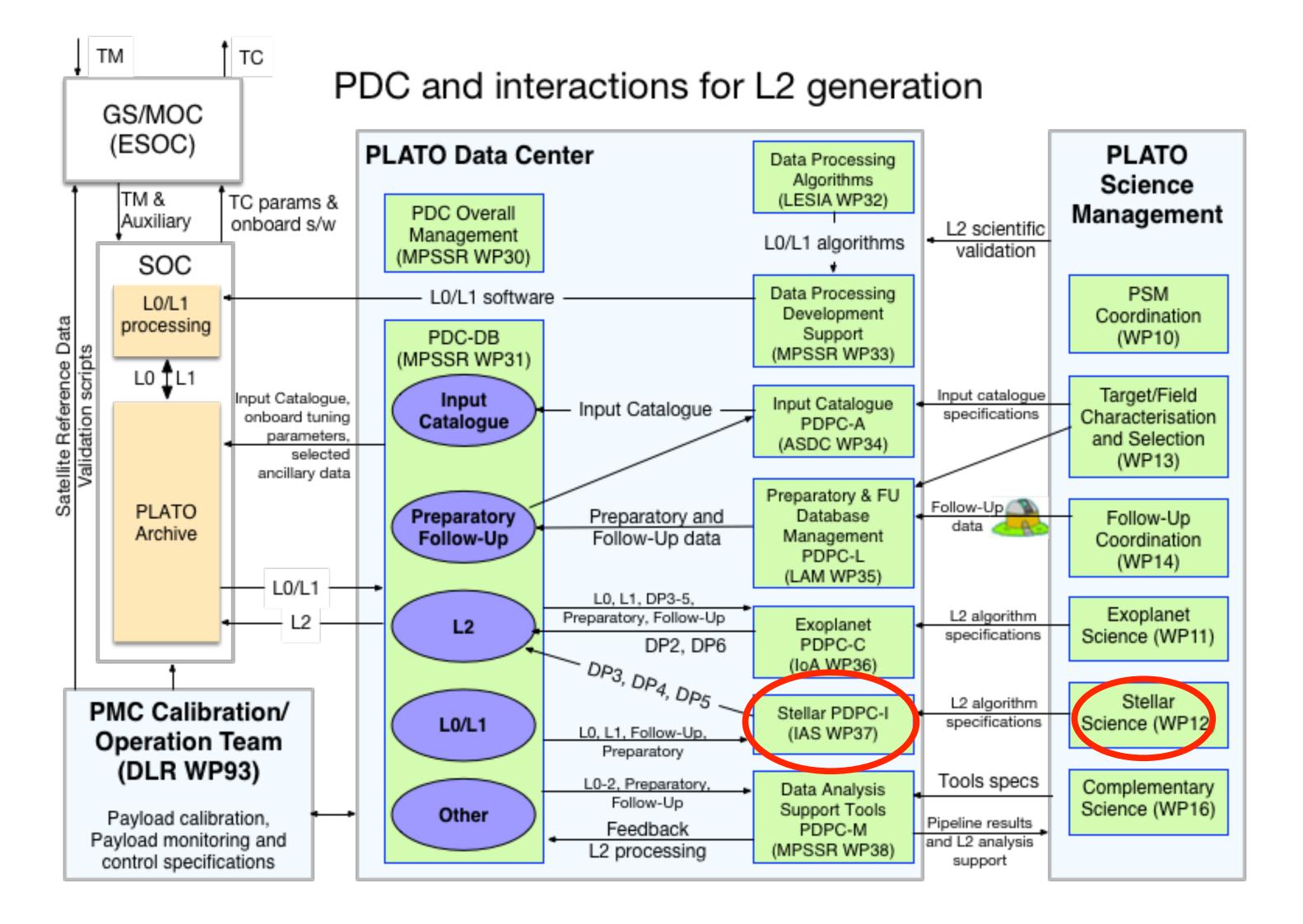
REVIEW DOCUMENT LIST 11

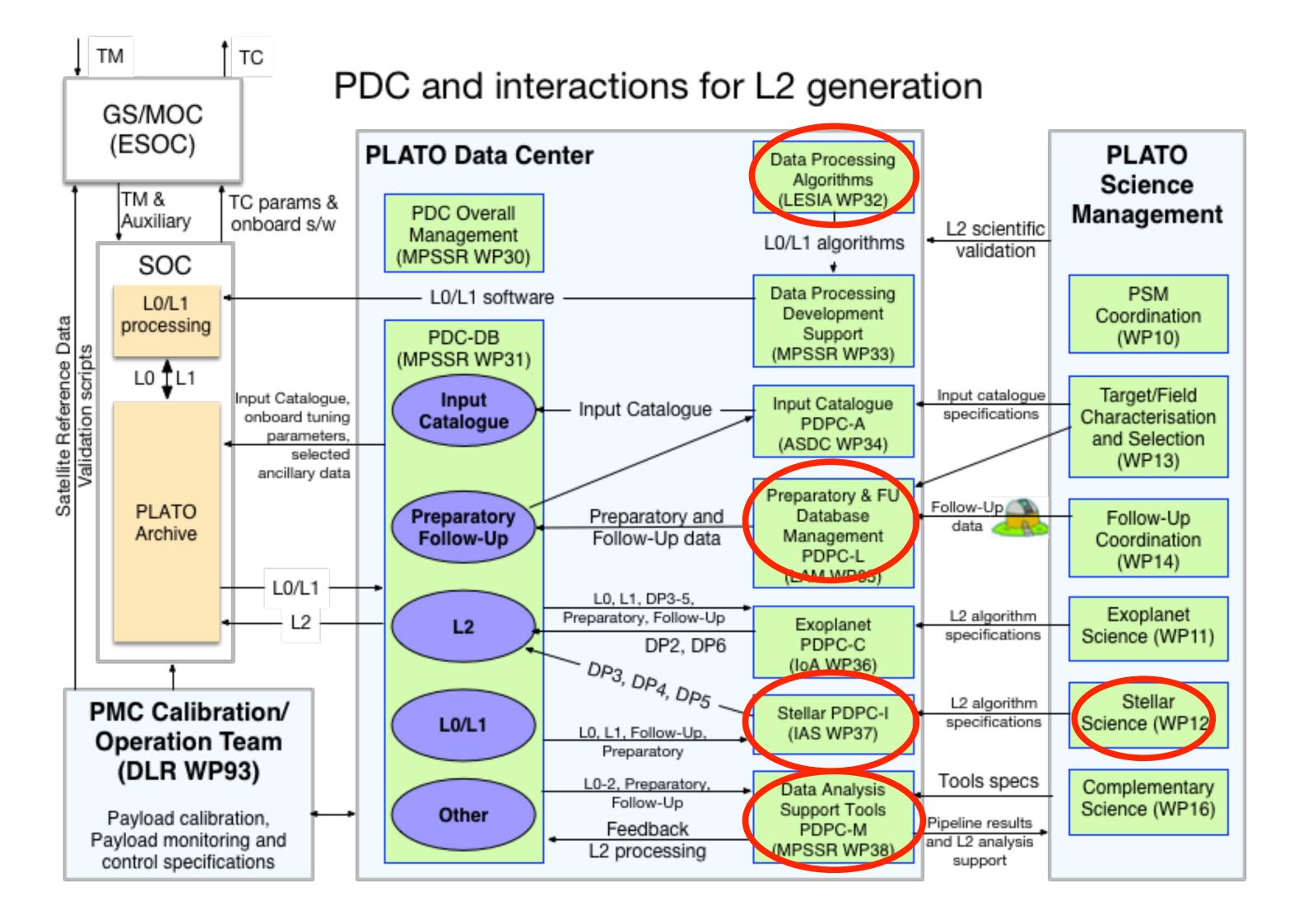
Document Name	
Mission Requirements Document (MRD)	ESA-I
Science Interface Requirements Document (SIRD)	ESA-I
Science Operations Concept Document (SOCD)	ESA-I
ESA SOC Science Implementation Plan (SOC SIP)	PLAT
PMC Science Implementation Plan (PMC SIP)	PLAT

Once again a huge effort. . .

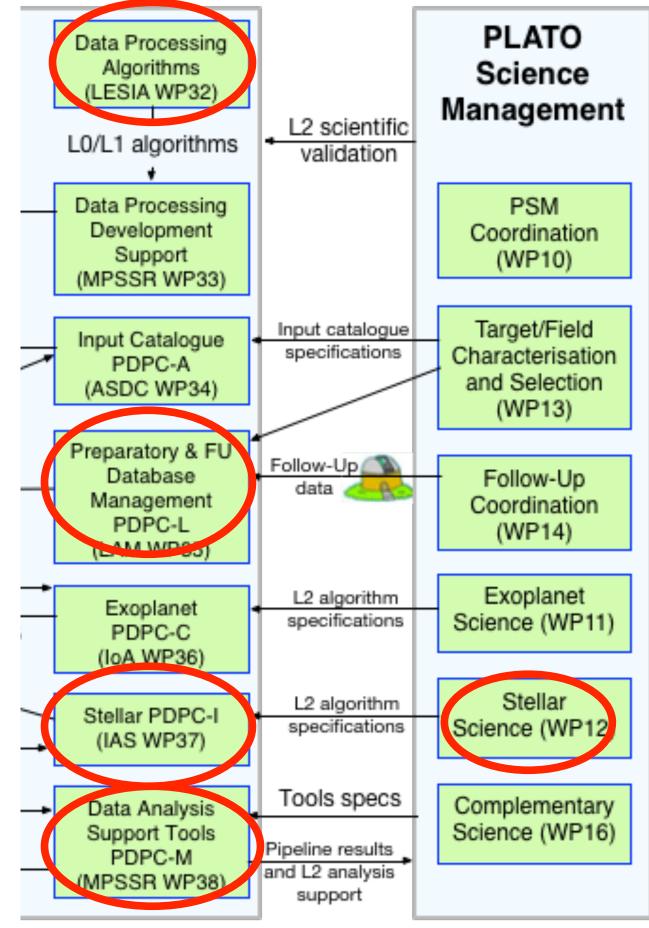

PDC and PSPM inputs SGS SIP consolidated by Ray Burston, Matthias Ammler, and PDC Office

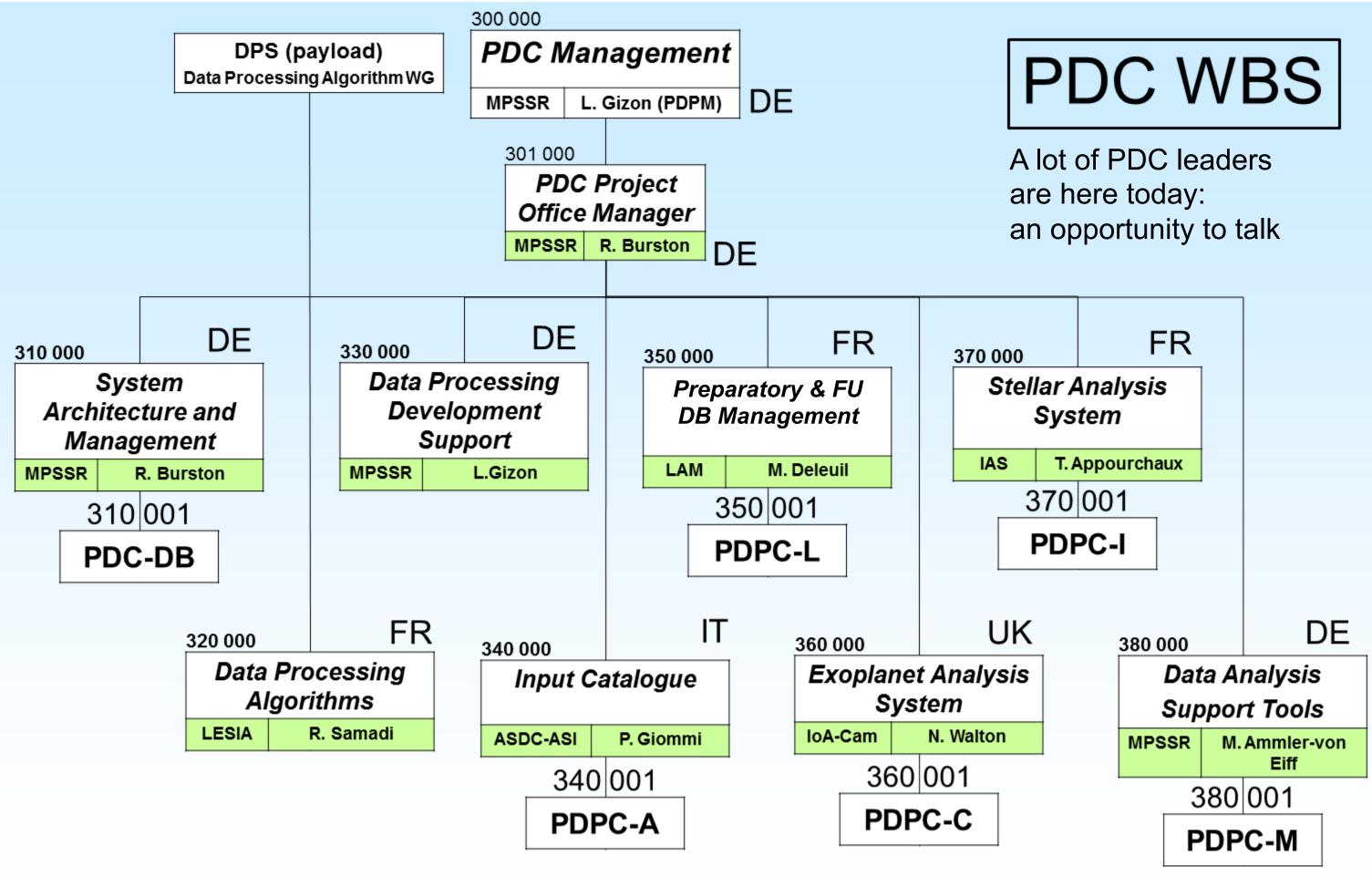



Data Levels


- **Telemetry baseline: Now 436 Gb/day using the K-Band** An increase of about a factor of 4 in telemetry. Many more imagettes can be downlinked (all P1 stars).
- **Level 0**: Depacketized light curves and centroid curves plus selected \bullet (6x6) imagettes; for each telescope (32 NT@25s + 2 FT@2.5s).
- **Level 1**: Computation of average light curves and centroid curves for \bullet each star (science-ready). Analysis of imagettes to validate and optimize performance of on-board treatment. Implementation of on-ground instrumental corrections, such as CCD corrections and jitter corrections. FT are used for fine guidance and navigation and to identify possible blend scenarios.
- **Level 2**: PLATO science Data Products, processed by the PDC using \bullet algorithms specified by the PSPM.
- **(TBC)** Level 3: Final list of confirmed + characterized planets (DP6)

PLATO Science Data Products

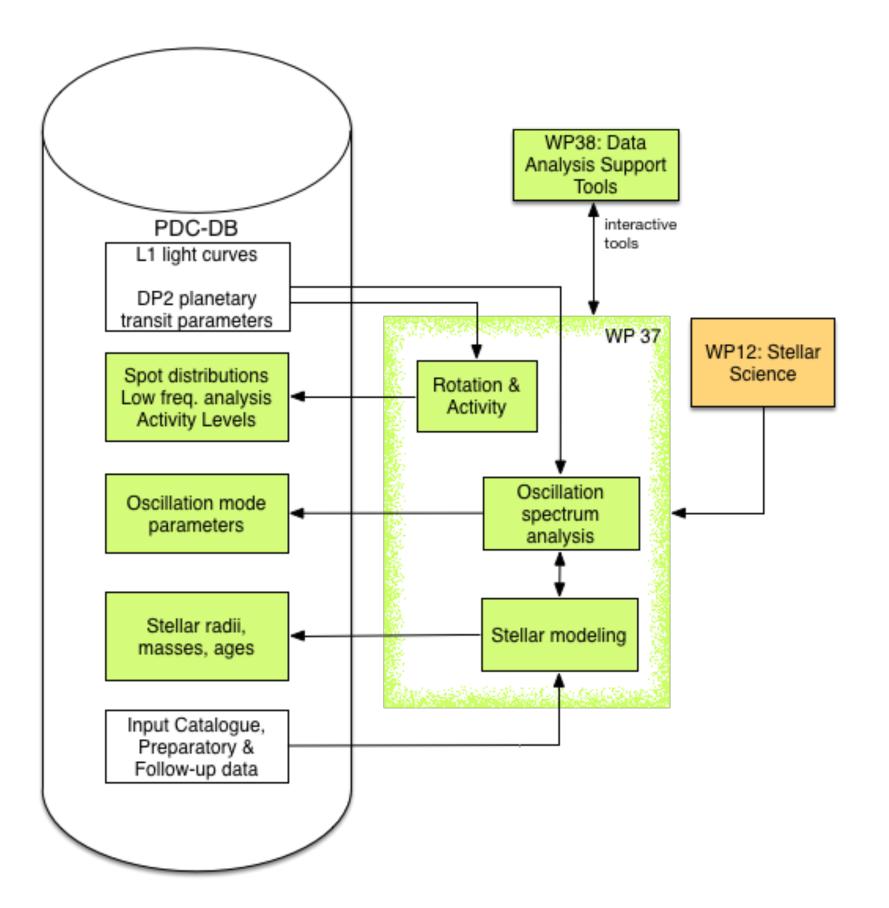



Splinter sessions cover most requirements to PDC Not so directly WP32 and WP38 though

- DP5 ← WG1 (chair M.A. Dupret): Stellar models output: specifications for parameters driving a high quality of the stellar models to be built, specifications for the grids, ...
- Add. data and DP5 ← WG2 (chair T. Morel): Non-seismic diagnostics and model atmosphere output: stellar radius, gravity, effective temperature, chemical composition, ...
- DP4 ← WG3 (chair: A. F. Lanza): Stellar activity & rotation output: rotation periods, activity level, ...
- DP5 ← WG4 (chair M. Cunha): Seismic diagnostics and stellar parameters output: seismic stellar mass, radius, age ...
- DP3← WG5 (chair W.J. Chaplin):

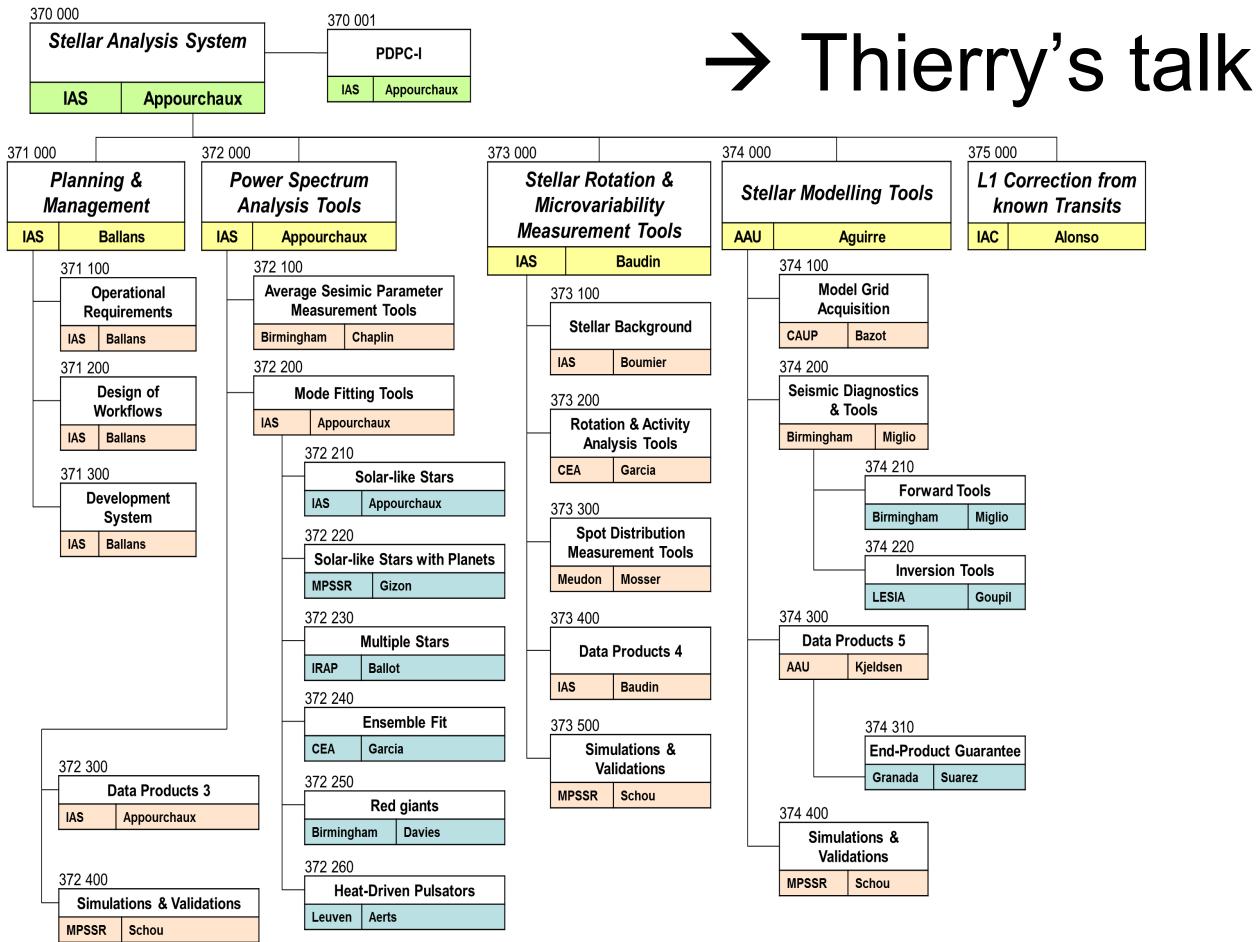
Seismic data analysis output: oscillation frequencies, amplitudes, widths ...

or L2 generation



PDC WBS

Do	-MPS		
Gizon	Page 12 of 10	16 July 2014	Max-Planck-Institut für Somensystemforschung


PDC Stellar Analysis System: WP37 Thierry Appourchaux (IAS)

WP31: System Architecture (Raymond Burston)

A PDC Database (PDC-DB) will be a central hub that ensures relevant data is made available in a timely manner to other systems, such as the five PLATO Data Processing Centers (PDPCs) and the SOC, for the processing and exploitation of the **PLATO** observations

Processing cycles: The two-weekly cycle allows for triggering the downlink of the imagettes of candidate planets and for triggering the ground-based follow-up of objects of interest. A full update of the science data products will be made available every three months.

Data Analysis Support Tools: WP38

Coordinator is Matthias Ammler-von Eiff (MPSSR)

- Interactive tools to assist PMC scientists to inspect and scientifically \bullet validate PLATO Data Products (including stellar DPs) on a case-bycase basis and update ranking of planetary systems. Tools to replay the pipelines step by steps and inspect intermediate data products.
- Tools for search, statistical analysis and data mining of large samples lacksquare
- Tools to provide feedback to mission planning, e.g. trigger download of imagettes to the ground.
- Tools to provide feedback to L₂ processing pipelines (exoplanet and stellar)

SGS PDCR Timeline

March-May 2015: PLATO SGS Preliminary Design Consolidation Review (SGS PDCR)

- 12th March 2015: Distribution of SGS PDCR documentation package to SGS PDCR Expert Panel
- 12th March 2015: Kickoff presentations to SGS PDCR Expert Panel •
- 31st March 2015: Deadline for Feedback from SGS PDCR Expert Panel •
- 15th April 2015: Deadline for SGS Responses to Feedback raised by the SGS PDCR Expert Panel ۲
- 20-24th April 2015: Meeting of SGS PDCR Expert Panel to review Feedback and SGS Responses
- mid-May 2015: Final SGS PDCR Report sent by SGS PDCR Expert Panel

EXPERT PANEL COMPOSITION 10

The composition of the Review Panel is as follows:

Review Panel	
KRETSCHMAR, Peter	SRE-
JENKINS, Jon	NASA/ Research
SIDDIQUI, Hassan	SRE-
JORDA, Laurent	CNRS
BEDDING, Tim	Univ. S
BUENADICHA, Guillermo	SRE-
BAKKER, Jorgo	SRE-
SYMONDS, Kate	HSO-
AGNOLON, David	SRE-
PILBRATT, Göran	SRI
SALGADO, Jesus	SRE
GONDOIN, Philippe	SRE
HERAS, Ana	SRI
O' ROURKE, Laurence	SRE-
RAUER, Heike	PM
GIZON, Laurent	PM
POLACCO, Don	PM
TEXIER, Damien	SRE-

REVIEW DOCUMENT LIST 11

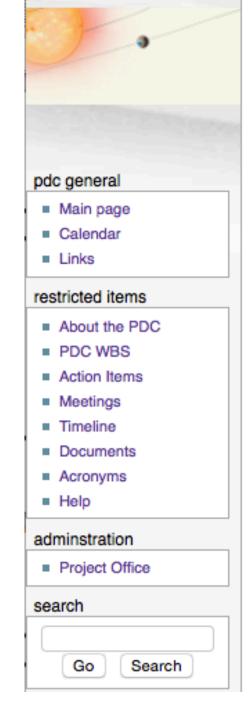
Document Name	Reference
Mission Requirements Document (MRD)	ESA-PLATO-ESAC-PRO-001
Science Interface Requirements Document (SIRD)	ESA-PLATO-ESTEC-SCI-RS-003
Science Operations Concept Document (SOCD)	ESA-PLATO-ESAC-OPS-001
ESA SOC Science Implementation Plan (SOC SIP)	PLATO-SGS-PL-001
PMC Science Implementation Plan (PMC SIP)	PLATO-PMC-SIP-MPSSR-001

OOG	Panel Chairperson
/Ames h Centre	Panel member
000	Panel member
, LAM	Panel member (TBC)
Sydney	Panel member
ODE	Panel member
оон	Panel member
-OSA	Panel member
FMP	Panel member
E-S	Panel member
-OE	Panel Member
-FP	Observer
E-S	Observer
OOR	Observer
1C	Observer
1C	Observer
1C	Observer
ODL	Observer

SGS PDCR Expert Panel Feedback (SAS related examples)

- ESA-PLATO-ESTEC-SCI-RS-003: SIRD: Sect 6.3: PSIRD-Devpt-SciVal-002: 'scientifically validate' this is an open-ended concept. Can there be additional text either in the requirement box, or in a section in the SIRD, that provides more detail as to what is meant by this? Examples would help.
- ESA-PLATO-ESAC-OPS-001: SOCD: Sect 3.1: PLATO relies on the PDC for L2 processing. Is there even a remote chance • a (larger) SOC could step in, in case the PDC cannot fulfill its obligations? Are there plans for a standardized L2 architecture?
- ESA-PLATO-ESTEC-SCI-RS-003: Level 1 data products should probably also include the power spectrum of the light ٠ curves
- ESA-PLATO-ESTEC-SCI-RS-003: Level 2 data products should also include the global asteroseismic quantities, such as • Dnu and numax, and also the masses and radii inferred from these
- ESA-PLATO-ESAC-PL-001: 7.4.4.1 Regs on level 1 data into archive w/in 3 years of end of ops seem rather long compared • to the req that level 0 data be produced within one day of receipt of data. The level 1 data should be in the archive much sooner, say within 1 year of the end of the ops for first version. Final reprocessed data should be in archive within 3 years of end of mission.
- ESA-PLATO-ESAC-PL-001: PSIRD-Devpt-DP-008/012. Are there re-processing requirements for PLATO as algorithms and • software are improved over the course of the mission? Is there a plan to host multiple versions of the archival data products from different pipelines, or will there only be one version available to the public at any given time?

PDC Project Office


- <u>PDCoffice@mps.mpg.de</u> at MPS Gottingen ~4 FTEs
- PDC office coordinates documentation and answers questions: ${}^{\bullet}$
 - PDPM: Laurent Gizon
 - PDC Project Office Manager: *Raymond Burston*
 - PDC Project Office Deputy Manager: Valerian Chifu
 - PDC Risk Management: *Matthias Ammler-von Eiff*
 - PDC Scheduling: *Joerg Knoche (new)*
 - PDC Cost Monitoring: *Michal Svanda (Prague)*
- PDC Wiki <u>http://www2.mps.mpg.de/services/plato/wiki/index.php</u> \bullet

PDC Wiki

http://www2.mps.mpg.de/services/plato/wiki/index.php

- PDC Calendar
- PDC WBS
- Action Items
- Meetings
- Timeline
- Documents (including PMC SIP and PDC WPDs)
- Acronyms
- Request account now
- Bookmark the page

Main Page

This is the approved revision of this page, as well as being the most recent.

Welcome to the PLATO Data Centre Wiki

The purpose of this Wiki is to allow the members of the PDC community to share information. To view (and edit) contents, you will need to log in **2**. If you do not have an account, you can request one **2**. Your account (and relevant editing permissions) will be approved once an administrator has reviewed your details. Once logged in, use the navigation bars on the left to access contents. For access issues/inquiries, please contact burston@mps.mpg.de **3**.

External Links

PLATO 2.0 Mission Related Websites

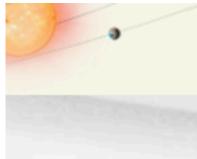
The Official Website of the PLATO 2.0 Mission Consortium & ESA PLATO Website &

PDC WG Websites and Wikis (Restricted Access)

WP 31 System Architecture and Management 3 (for access contact Raymond Burston 3)

WP 32 Data Processing Algorithms 🔒 (for access contact Reza Samadi 🖃)

WP 36 Exoplanet Analysis System & (for access ask Nic Walton =)


[edit]

[edit]

[edit]

[edit]

PDC Wiki: Documents (including PMC SIP)

pdc general

- Main page
- Calendar
- Links

restricted items

- About the PDC
- PDC WBS
- Action Items
- Meetings
- Timeline
- Documents
- Acronyms
- Help

adminstration

Project Office

search

Go Search

toolbox

- What links here
- Related changes
- Upload file
- Special pages
- Printable version
- Permanent link
- Upload multiple files

Documents

This is the approved revision of this page, as well as being the most recent.

Contents [hide]

- 1 M3 Documents for the PLATO SGS PDCR, 12th March-May 2015
 - 1.1 PMC Documents for the SGS PDCR, 12th March-May 2015
 - 1.2 ESA Documents for the SGS PDCR, 12th March-May 2015
- 2 M3 PLATO Instrument Preliminary Requirement Review 12th September 2013
- 3 M3 PLATO AO Proposal 18th January 2013

M3 Documents for the PLATO SGS PDCR, 12th March-May 2015 [edit]

Here we provide the ESA and PMC documents that feed into the PLATO Science Ground Segment Preliminary Design Consolidation Review, March-May 2015

PMC Documents for the SGS PDCR, 12th March-May 2015

The PMC documents that feed into the SGS PDCR are the PMC SIP and the PDC/PSPM WPDs.

- PLATO Mission Consortium Science Implementation Plan (PMC SIP), Issue: 2, Revision: 3 (pdf)
- PDC WPDs Development, Issue: 2, Revision: 3 (pdf)
- PDC WPDs Operations, Issue: 2, Revision: 3 (pdf)
- PDC WPDs Post-Operations, Issue: 2, Revision: 3 (pdf)
- PSPM WPDs Development, Issue: 2, Revision: 1 (pdf)
- PSPM WPDs Operations, Issue: 2, Revision: 1 (pdf)
- PSPM WPDs Post-Operations, Issue: 2, Revision: 1 (pdf)

ESA Documents for the SGS PDCR, 12th March-May 2015

The four ESA documents that feed into the SGS PDCR are the SIRD, SOCD, MRD, and the ESA SOC SIP. In addition we also provide here the latest versions of the SciRD and the PLATO 2.0 Instrument Project Management Plan, which are both not under review, for your reference. The Science Management Plan is also provided for your reference, but note that this document is currently being significantly updated.

- Science Implementation Requirements Document (SIRD), Issue: 1, Revision: 6 (pdf)
- Science Operations Concept Document (SOCD), Issue: 1, Revision: draft 6 (pdf)
- Mission Requirements Document (MRD), Issue: 4, Revision: 1 (pdf)
- ESA Science Operations Center Science Implementation Plan (ESA SOC SIP), Issue: 0, Revision: 3 (pdf)
- Science Requirements Document (SciRD), Issue: 5, Revision: 0 (pdf)
- PLATO 2.0 Instrument Project Management Plan, Issue 1, Revision 0 (pdf)
- PLATO Science Management Plan, Issue 2, Revision 2 (pdf)

[edit]

[edit]

On-going work: PDC

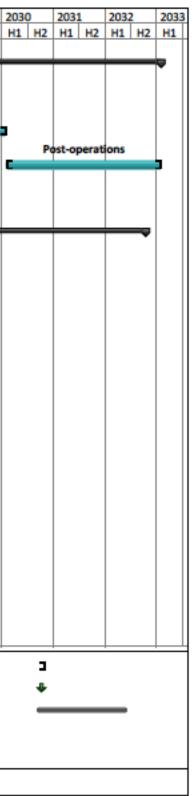
- PDC contribution to PDCR review \bullet
- Under PSAT responsibility: Refined definitions of Data ulletProducts wrt specific samples of stars. Data policy.
- Implications of K-band upgrade \bullet
- Interfaces PDC/PSPM, e.g. re. processing of FU data products ullet
- Interfaces PDC/SOC: developing software in common \bullet
- Overall system architecture \bullet
- Simulation concept. Text exists. ullet
- Coherent development plan for PDC and PSPM \bullet
- Updates to ESA's SOCD, SIRD, SciRD, SMP (incl. data policy) ullet
- Regular update of PMC's WBS, WPDs, SIP, costs (\leftarrow done) lacksquare
- PDC will keep open a wiki to deal with day to day affairs \bullet

Simulations

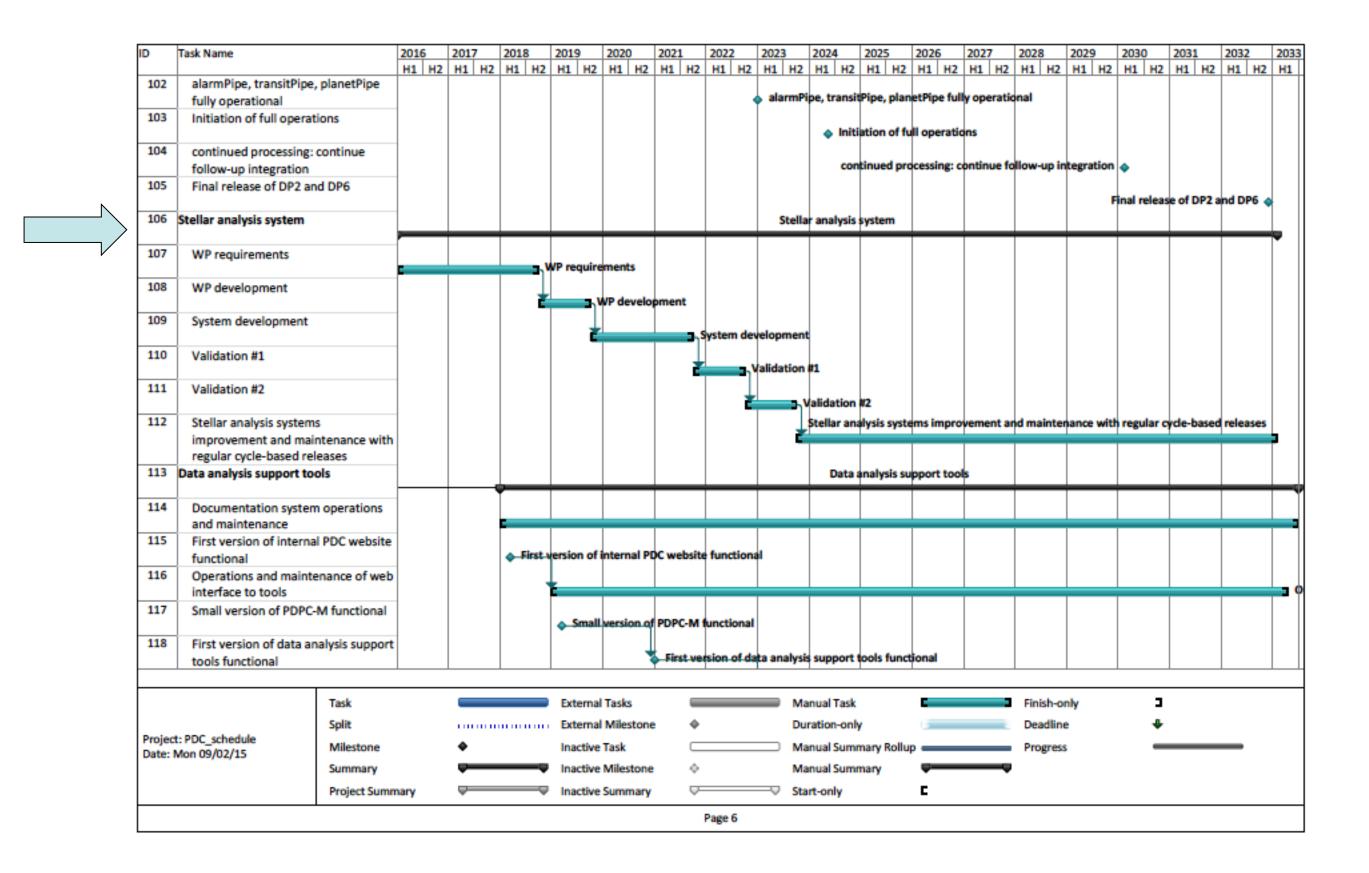
(At least) 3 kinds of simulators are needed:

One simulating image level data, i.e. raw samples, including detailed instrumental effects and user-defined astrophysical inputs (cf. PLATOSim)

 \rightarrow useful to investigate specific issues and validate algorithms on a small scale (i.e. with limited-in-size but quite realistic data)


One simulating telemetry as downloaded from the satellite, with simplified instrumental effects and astrophysical inputs \rightarrow useful to generate large-volume datasets to be used in end-to-end tests, involving all systems

one simulating intermediate data products as produced by different systems (e.g. PDPCs) or different steps in the data processing.


 $[\]rightarrow$ Useful for downstream systems, which may end up not participating to the end-to-end tests (due to the simulated data being to simplistic to trigger them or to delays in the testing schedule).

Scheduling

in.	Teal: Name		2016	2017	2010	2010	2020	2024	2022	2022	2024	2025	2020	2027	2020	2020	
ID	Task Name		2016	2017	2018	2019	2020 H1 H2	2021	2022	2023	2024	2025	2026	2027	2028 H1 H2		2
1	Mission phases		11 12	n1 n2	n1 n2	n1 n2	n1 n2	n1 n2	n1 n2	14 12	Mission ph	ases	n1 n2	n1 n2	ni nz	n4 n2	
2	Development		-			Deve	opment										
3	Operations												Oper	ations			
4	Post-operations																c
5	Implementation phase	start	♦ Imple	mentatio	n phase st	art											
6	Development cycles		-							Dev	elopment	cycles					
7	Kyzyl Kum (0)		Kyz	yl Kum (0)													
8	Sonoran (1)		-	Sonoran	(1)												
9	Colorado (2)			Colo	rado (2)												
10	Karakum (3)				Karakum	(3)											
11	Great Sandy (4)				Gre	at Sandy (4	4)										
12	Chihuahuan (5)					Chihuahu	an (5)										
13	Great Basin (6)					Grea	at Basin (6	•									
14	Syrian (7)						Syrian (7)										
15	Great Victoria (8)						Grea	t Victoria	(8)								
16	Patagonian (9)						-	Patagoni	an (9)								
17	Kalahari (10)							Kala	ahari (10)								
18	Gobi Desert (11)								Gobi Des	ert (11)							
		Task				External	Tasks			— м	anual Task				Finish-or	ily	
Project: PDC_schedule Date: Mon 09/02/15 Split		Split				External	Milestone	•		Du	ration-only	1		_	Deadline	1	
				*		Inactive					anual Sumr		P		Progress	l.	
	Summary Project Sumn		ary	÷	•		Milestone				Manual Summary 🖵 🖵 🛡 Start-only 🖬						
			-						Page 1								

PDC Scheduling

Towards the Operational System

Activities ought to address:

- Algorithmic complexity, evolution from current knowledge ullettaking into account the expertise in PSPM from CoRoT and Kepler results.
- Computational complexity number of targets, data richness ullet
- Data challenges managing the data flows, considerations of lacksquarevolume (K-band)
- People challenges automation and final manual review and • ranking of planetary systems
- End-to-end testing and validation ullet
- And funding issues. . . ullet

8-9 years to create an effective discovery pipeline!

Thank You

Data Processing Algorithms: WP32

Coordinator is Réza Samadi (LESIA)

Definition of on-board & on-ground data treatment algorithms (up to L1)

- Telemetry: 436 Gb per day (3.5 hr window per day for downlink)
 - Light curves and centroid curves for all 32 NT and 2 FT
 - Imagettes: typically 6x6 pixels for NT and 9x9 pixels for FT
 - House keeping (e.g. temperatures and voltages)
- Basic on-ground processing from L0 to L1
 - PSF modeling across the field (using imagettes)
 - Differential aberration (relativistic effect on star line of sight)
 - Satellite jitter correction
 - Outliers (glitches, proton impacts)
 - Flux calibration: gain of the electronic chains, quantum efficiency of the CDDs
 - Long-term effects (CCD ageing effects, long term temperature variations)
 - Feedback to TC \rightarrow optimization of parameters (e.g. masks)

ne CDDs ons)