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Topics in Part I

• Box-in-a-Star Simulations

• Solar Surface: Code Comparisons

• Mean Thermal Structure

• Kinetic Energy and Kurtosis

• Implications for Modelling
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Box-in-a-Star Simulations I
In surface convection zones of main sequence stars
             surface pressure scale height P/(ρg) = Hp ≪ R, the stellar radius
   ! Standard idea: use a simulation box representing only a small volume of
       the entire convection zone (“box-in-a-star”) ! Solar granulation simulations !     
       Solve equations numerically for that volume on a grid in space and time.

   ! Compute horizontal averages or averages over identical optical depth, 
       followed by time averages (assuming a quasi-ergodic hypothesis to hold)

(illustration courtesy of F. Zaussinger)
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Solar Surface: Code Comparisons I
• closed simulation by F. Zaussinger

– closed vertical boundaries; G93 composition; grey (1 bin) RT; WENO5 scheme
– size:      6*6*3 Mm3,           grid: 150*150*190,   hh = 40 km,    hv = 16 km
– time:   ~3 hours 30 min

• osc6 simulation by H. Grimm-Strele
– open vertical boundaries; G93 composition; grey (1 bin) RT; WENO5 scheme
– size:      6*6*4 Mm3,           grid: 159*159*316,   hh = 40 km,    hv = 13 km
– time:      2 hours 33 min

• cosc13 simulation by H. Grimm-Strele & F. Kupka
– open vertical boundaries; G93 composition non-grey (4 bin) RT; WENO5 scheme
– size:      6*6*3.88 Mm3,      grid: 179*179*359,   hh = 35.3 km,  hv = 11.1 km
– time:    11 hours 6 min (126 sound crossing times)

• wide4 simulation by H. Grimm-Strele
– open vertical boundaries; G93 composition; non-grey (4 bin) RT; WENO5 scheme
– size:     18*18*4.45 Mm3,   grid: 519*519*414,   hh = 35.3 km,  hv = 11.1 km
– time:      3 hours 27 min (39 sound crossing times)

ANTARES solar granulation simulations used in the following
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Solar Surface: Code Comparisons II

• CO5BOLD simulations by M. Steffen
– open vertical boundaries; chem. composition: G98
– non-grey (5 bin) RT (grey for deep case); Roe-scheme & SGS-viscosity
– size: 11.2*11.2*3.1 Mm3, grid: 400*400*165, hh = 28 km, hv = 12-28 km
– deep case: 11.2*11.2*5.2 Mm3, grid: 200*200*250, hh = 56 km, hv = 21 km

• CKSR (Chan-Kim-Sofia-Robinson) simulation: “model 2008” by F.J. Robinson
– closed vertical boundaries; chem. composition: G98
– grey RT: 3D Eddington approximation; shock-smoothing & SGS viscosity 
– size: 5.4*5.4*3.6 Mm3, grid: 117*117*190, hh = 46 km, hv = 19 km

• STAGGER (Nordlund & Stein) simulation by R. Samadi & K. Belkacem
– open vertical boundaries; chem. composition: G98
– non-grey (4 bin) RT; shock-smoothing & hyperviscosity
–  size: 6*6*3 Mm3, grid: 150*150*150, hh = 40 km, hv ~ 20 km (variable)

Solar granulation simulations based on other codes
(data by courtesy of cited authors; cf. Kupka, F. 2009, Mem.S.A.It. 80, 701) 
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Mean Thermal Structure I
Temperature profile from 
granulation simulations

mean temperature as a
function of height

Teff  ~ 5777 K,
g = 274 m sec-2

(log g = 4.4377),
M = 1 M☉

3D simulations,
averaged horizontally
and in time
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good agreement except for the photosphere (boundary conditions, ...) and a slightly different 
gradient in the interior in CO5BOLD simulations (equation of state ?)
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Mean Thermal Structure II
Solar photospheres

mean temperature as a
function of height

Teff  ~ 5777 K,
g = 274 m sec-2

(log g = 4.4377),
M = 1 M☉

3D simulations,
averaged horizontally
and in time

Uppers layers very sensitive to details in the boundary conditions ! In addition: CKSR: 
too shallow ? Eddington approximation ? Closed ANTARES simulations: too shallow ?
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Mean Thermal Structure III
Solar photospheres: CO5BOLD vs. MURaM vs. STAGGER
Mean temperature now as a function of optical depth for solar parameters:
Teff  ~ 5777 K, g = 274 m sec-2 (log g = 4.4377), M = 1 M☉
3D simulations averaged over iso-τ500 nm surfaces and in time

Systematic differences start to increase at optical depths smaller than 0.01, 
otherwise differences are mostly around the superadiabatic peak (< 100 K).
(plot taken from Fig. 9 in Beeck et al. 2012, A&A 539, A121)



Constraints on T-! lawsObs. de Paris, site de Meudon, 24 May 2016
9

Kinetic Energy and Kurtosis I
Distribution of total to
vertical kinetic energy in
granulation simulations

PHI is needed by many
semi-analytical models

Teff  ~ 5777 K,
g = 274 m sec-2

(log g = 4.4377),
M = 1 M☉

3D simulations,
ensemble averages 

Notice: 1. Very large spread in the photosphere. 2. Systematic trend in all simulations 
towards (erratic) purely vertical flow due to influence of lower boundary conditions !
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Kinetic Energy and Kurtosis II

Agreement only within and just underneath the superadiabatic layer. Within a region of up 
to three pressure scale heights very sensitive to boundary conditions (esp. lower ones).

Distribution of kurtosis of
vertical kinetic energy in
granulation simulations

Related quantities are 
needed in semi-analytical
models of p-mode driving

Teff  ~ 5777 K, g=274 m sec-2

(log g = 4.4377),
M = 1 M☉

3D simulations,
ensemble averages 
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Implications for Modelling I

• Constructing 1D models based on 3D simulations
– “Universality” of thermal equilibrium structure in 3D simulations of 

surface convection with different numerical codes supports
– the construction of T-τ laws, i.e. surface boundary conditions, for stellar 

pulsation and stellar evolution calculations based on 3D simulations.
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Implications for Modelling I

• Constructing 1D models based on 3D simulations
– “Universality” of thermal equilibrium structure in 3D simulations of 

surface convection with different numerical codes supports
– the construction of T-τ laws, i.e. surface boundary conditions, for stellar 

pulsation and stellar evolution calculations based on 3D simulations.

• Methods
– Calibrate / tune MLT parameter α: 
• reproduce integral property (L) or local quantity (entropy jump Δs, sbot, ...)

– Scaling laws from 3D simulations: for quantities such as entropy as a 
function of depth for a (limited) range within the HRD

– “Model patching”: use 3D simulation average as upper boundary 
condition (relocated into stellar envelope, below superadiabatic layer)
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Implications for Modelling II

Optimum MLT values α for entropy jump Δs as a function of sbot for the STAGGER grid by 
Magic et al. (2015), A&A 573, A89 (Fig. 5). 

The optimum fit parameter
α is depth dependent. 

The value found for it 
depends on the exact 
choice of the dependent
variable to be optimized.

Different optimizations
hence yield different
temperature structures.
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Implications for Modelling III

Test of a scaling law for the entropy based on the STAGGER grid by Magic et al. (2013 to 
2015) derived by Magic (2016), A&A 586, A88 (Fig. 6).

Entropy as function
of depth for the Sun,
a the turn off, and in
the red giant phase.

Comparison of direct
result (black dashes)
with scaling formula
(solid red line).

This recipe leads to 
systematic differences
in temperature gradients
& the pressure structure.
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Implications for Modelling IV

• Conclusions
–  The most promising approach appears to be the patching method:‏
•  3D results carried over as much as possible
•  thermal / pressure structure of 3D simulations is on save grounds
•  Accuracy, if interpolation needed ? Simulation grid density ?

–  For the kinetics & dynamics of the velocity field one has to be much
 more careful: possible influence of boundary conditions !

–  Consider physically more complete models as target for  
 optimizations through 3D simulations.

–  Take PLATO 2.0 as an incentive to develop a library of convection  
 models of different complexity (including averaged 3D simulations).

• Some more results provided in part II ...
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Topics in Part II

• 1D + 3D Mean Thermal Structures

• Velocity Fields and Boundaries

• Different Initial Conditions

• Implications for Modelling

• Lessons from DAs and Cepheids
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1D + 3D Mean Thermal Structures I
Temperature profile:
ATLAS9 1D atmospheres
vs. 3D simulations

mean temperature vs.
mean total pressure

Teff  ~ 5777 K,
g = 274 m sec-2

(log g = 4.4377),
M = 1 M☉

3D simulations agree while 1D models show systematic differences. Gradient of CM model 
typical for average over updrafts only, for MLT model it depends on α.
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1D + 3D Mean Thermal Structures II
Temperature profile:
ATLAS9 1D atmospheres
vs. 3D simulations

mean temperature vs.
mean total pressure

Teff  ~ 5777 K,
g = 274 m sec-2

(log g = 4.4377),
M = 1 M☉

For deeper layers only differences between the simulations appear (as they are based on 
different EOS, among others. The CM model mainly changes the surface layers (the 
adiabatic temperature gradient is reached underneath those included in ATLAS9 models).
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Velocity Fields and Boundaries I

Agreement only within and just underneath the superadiabatic layer. Very sensitive to 
boundary conditions. Note: contrary to some claims, the non-local Reynolds stress models 
by Canuto (1992, etc.) and Xiong (1985, etc.) all account for skewness.

Distribution of skewness
of vertical kinetic energy 
in granulation simulations

Skewness measures the
asymmetry between up-
and downflows

Teff  ~ 5777 K, g=274 m sec-2

(log g = 4.4377), M = 1 M☉

3D simulations,
ensemble averages 
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Velocity Fields and Boundaries II
Specifying inflowing internal energy / entropy at the bottom

Model 1: eq. (1), τKH = 550 h, entropy gradient zero in outflow
              (similar to Vögler et al. 2005, A&A 429, 335; MuRAM code)
Model 2: eq. (3), τS = 100 h, cPchange = 0.1 (eq. 5, 6)
Model 3: eq. (2), τS = 1000 h, cPchange = 1.0 (eq. 5, 6)

(from Grimm-Strele et al. 2015, New Astron. 34, 278)
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Velocity Fields and Boundaries III
Determining density + entropy but avoid generating shocks 

For models 2 and 3 the density and vertical velocity are modified once 
more to ensure mass conservation (Eq. 4 to 6).

This is very similar to Freytag et al. (2012), J. Comp. Phys. 231, 919, who, 
however, specify a fixed inflow entropy which may vary on a time scale set 
by another adjustable parameter, cSchange.

For the three velocity components, gradients are set to zero for all models.

(from Grimm-Strele et al. 2015, New Astron. 34, 278)

S(ρ(1), �(1)) = Sinflow (4)

ρ(2) = ρ(1) + cPchange
τ

tchar

1

v2snd
(< p > − p) (5)

�(2) = �(1) + cPchange
τ

tchar

1

Γ1ρ
(< p > − p) (6)
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Velocity Fields and Boundaries IV
Different open bottom boundary conditions

Effects caused by changing inflow according to flux at top on kinetic energy flux: up 
to two pressure scale heights are modified (as with closed b.c.s).
(from Grimm-Strele et al. 2015, New Astron. 34, 278)

Figure 4: Effect of using (9) for calculating Sinflow in Model 3. Ra-
diative flux F top

rad calculated as horizontal average of Frad in the in-
nermost domain layer and normalised by F� = σT 4

eff .

Figure 5: Convective flux of three solar models which differ in the
bottom boundary condition, normalised by F� = σT 4

eff . The mean
pressure profile from Model 1 is shown, too (the pressure profiles
of the models do not differ significantly). The boundary conditions
affect the lower 2Mm, or two pressure scale heights, of the domain.

inflowing material is decreased by about 0.4% which is
reflected in a completely wrong overall flux at the bottom
boundary shown in Figures 5 and 6. This implies that the
correction will also not work if applied on even shorter time
scales than τKH because then, the unfavourable corrections
due to (9) would be even larger.

We deduce that the coupling of inflowing energy at the
bottom boundary and the energy radiated at the top works
on much longer time scales than common in simulations
of solar and stellar surface granulation. The formulae (7)
and (9) require a much longer pre–relaxation time of the
model to be effective, or a model which is already relaxed
to a suitable three–dimensional stratification.

From Figure 5 we also deduce that blindly employing
formula (7) led to a completely wrong convective flux at
the bottom boundary. The flux is too large by a factor of
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4. In contrast, the energy fluxes from Stein and Nordlund
(2000) do not show any anomaly near the bottom bound-
ary. We suppose that the (fixed in time) value for the
energy of an inflow in Stein and Nordlund (2000) was well–
chosen, whereas we started with the value from the one–
dimensional initial model which cannot be expected to be
in agreement with the value suited for a three–dimensional
simulation, and which in the end invoked an unreasonably
strong correction on Sinflow.

Due to the insufficient vertical resolution of the sim-
ulation, the radiative flux at the top does not approach
the desired value no matter how strong the correction at
the bottom boundary is — at least not on time scales af-
fordable for a three–dimensional simulation. Since τKH is
that large and the coupling between the radiative flux at
the top and �inflow or Sinflow too weak, the convective flux
is forced to unacceptable values by the bottom boundary
condition. Similar is valid for Model 3 where (9) is used.
There, Fconv even changes sign.

This weak coupling is also demonstrated by the fact that
the radiative fluxes of all three models do not differ signifi-
cantly, even though the differences in the lower part of the
simulation domain shown in Figures 5 and 6 are exorbi-
tant. To be more precise, in the lower 2Mm of the models,
or two pressure scale heights, the fluxes are influenced in a
very direct and strong way by the boundary condition de-
spite their only difference is the determination and change
of �inflow (resp. Sinflow) as a function of time. Near the
surface however, the differences between the three models
are insignificant.

We note here that the simulations presented in Vögler
et al. (2005) have much more shallow domains with a ver-
tical extent of typically just 1.4Mm of which only 0.8Mm
are located below a mean depth for which the optical depth
is 1. As a result, in their case τKH ≈ 1 to 2 h. For this
special case we can expect a much tighter coupling of bot-
tom boundary and F top

rad
than we observe here for our much

11
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Velocity Fields and Boundaries V
Effect of different open bottom boundary 
conditions on the flow inside the domain

Scaled velocity distribution at 1.3 Mm, 
2.8 Mm and 4.3 Mm below the optical 
surface (from top to bottom). 

Velocities in each of the layers were 
grouped into 96 equal–sized bins and 
then scaled by the maximum velocity 
in this layer. 

Finally, the distribution function was 
normalised by the number of nodes 
and time steps such that the integral 
from −1 to 1 yields 1. 

Due to the coordinate system used in 
ANTARES upflows have u(x, y, z) < 0.

(from Grimm-Strele et al. 2015, 
New Astron. 34, 278)

deeper models because the distance between the bottom

boundary and the optical surface is only about two pres-

sure scale heights.

We hence prefer BC 3b as used in Model 2, since these

boundary conditions keep the energy fluxes in the lower

part of the domain at the desired level and do not produce

any serious artifacts even if the initial value of Sinflow is not

chosen very well. The variation over one time step is small

for this procedure. If desired, a (practically) constant in-

put entropy can be obtained by choosing τS � τKH.

Since we do not use any artificial diffusive terms in our

simulations presented here, the mean viscous flow is very

small such that we decided not to include it in our plots.

3.2.2. Dependence on Parameters of the Boundary Con-
ditions

The parameter cPchange in Freytag et al. (2012) defines

a time scale on which pressure fluctuations at the bottom

boundary are damped. τS controls the time scale on which

Sinflow is changed. We tried two values for both param-

eters and found that they influence the behaviour of the

boundary conditions considerably.

In Figure 6, the kinetic flux of Model 3 goes to 0 near the

bottom boundary giving a completely wrong flow pattern

in the lower half of the simulation domain. For Model 3,

the parameter cPchange from Freytag et al. (2012) was fixed

to 1.0 and τS ≈ 1000 h in (10). The only reasonable fluxes

are found in Model 2, where the formula (10) was used

for the calculation of Sinflow with τS ≈ 100 h and where

cPchange was set to 0.1. It is striking to see how large the

influence of these parameters can be. Model 1 uses BC 2.
In Figure 7, the distribution of the vertical velocity of

the three models in three vertical layers with fixed depth

and scaled by the maximum velocity in this layer is de-

picted, i.e. the distribution density function of the dimen-

sionless variable uscaled with

uscaled(x, y, z) =
u(x, y, z)

maxy,z |u(x, y, z)|
. (30)

In the layer corresponding to the uppermost image in

Figure 7, which is situated 1.3Mm below the optical sur-

face, the differences between the three models are very

small. As expected, the distribution has a significant skew-

ness due to the asymmetry between the faster, narrow

downflows and the slower upflows. Note the shift of the

maximum induced by the broad upflows (and the fully

compressible treatment of the flow). Going deeper and

therefore closer to the bottom boundary the differences
between the models become more prominent. In the bot-

tom panel, the distribution of Model 3 has much narrower

tails and its skewness is much smaller than in Model 1 or

Model 2, whereas the velocity distribution of Model 1 and

Model 2 is in all three layers very similar (as we expect

it to be). On the other hand, there are some deviations

visible for Model 1 while for Model 2, if scaled to the same

maximum value, i.e.
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Figure 7: Scaled velocity distribution 1.3Mm, 2.8Mm and 4.3Mm
below the optical surface (from top to bottom). The velocity is scaled
by the maximum velocity in the corresponding layer. For theses pic-
tures, the velocities in each of the layers were grouped into 96 equal–
sized bins and scaled by the maximum velocity in this layer. Finally,
the distribution function was normalised by the number of nodes and
time steps such that the integral from −1 to 1 is 1. Due to the co-
ordinate system chosen for ANTARES upflows imply u(x, y, z) < 0.
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Different Initial Conditions I
Different 1D solar structure models as initial conditions

Entropy of three initial models 
and a relaxed simulation as well 
as τKH as a function of depth. 

The data for the initial models are 
obtained from an average over 
the first 0.6 s of each 3D model 
simulation (��1D model). 

Each of the simulations relaxes 
to the same profile, thus just one 
case shown (green line).

(from Grimm-Strele et al. 2015, 
New Astron. 34, 278)
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Figure 8: Entropy of the three initial models and of the numerical
simulation as well as τKH as a function of depth. The data for
the initial models are obtained from an average over the first 0.6 s
of each three–dimensional model. Since the simulations based on
these initial conditions all feature similar relaxed profiles, only one
representative simulation is shown in its relaxed state, too.

Figure 9: ∇ − ∇ad of the three initial models and of the numerical
simulation. The data for the initial models are obtained from an
average over the first 0.6 s of the three–dimensional model. The inte-
gration rule from Carlson (1963) was used for the angular integration
in the radiative transfer solver.

In all three models, the entropy profile as well as the
radiative flux at the top do not differ significantly. Thus,
differences in the superadiabatic layer exhibited by the ini-
tial models are not important, if the simulations are run
long enough in terms of τKH for that region. From Figure 8
we deduce that τKH is about 1 to 2 h in the region where
the entropy profiles of the initial models differ, which cor-
responds to the simulation time used for pre–relaxation.

3.4. Resolution Dependence
To reach the correct radiative flux at the top the resolu-

tion of the simulation must be high enough and the initial
model must be well-suited. From numerical experiments
we deduce that a vertical resolution of about 10 to 11 km
is sufficient for this purpose, if the integration rule of Carl-
son (1963) is used for the angular integration. These num-
bers are slightly different depending on the type of binning
used for the radiative transport, and depend also on the
quadrature formula used to perform angular integration.

The resolution dependence is demonstrated in Table 2,
where a bunch of grey and non–grey models are compared
with respect to the radiative flux on the top of the do-
main. All of these models differ from the ones mentioned
above in terms of simulation domain size, duration of the
simulation and grid resolution. Whereas the grid resolu-
tion is specified directly in Table 2, the simulation domain
is always between 3.8Mm to 4.1Mm in the vertical and
6.0Mm in the horizontal direction. All models are three-
dimensional and the radiative transfer equation is solved
along 24 rays using the quadrature rule of Carlson (1963)
for the angular integration, but the number of bins differs.
The grey approximation corresponds to the case of one
bin, whereas the non–grey models were calculated with
four bins. The bottom boundary conditions are specified
in Table 2. Finally, the model must reach far enough into
the photosphere. We found that about 800 km above the
optical surface are sufficient.

F top

rad
primarily depends on the vertical resolution. In

the grey case, F top

rad
is slightly lower than in the non–grey

case where we used 4 bins. We emphasize that the rate
of change of F top

rad
with numerical resolution depends on

the angular quadrature rule. The rule by Carlson (1963),
which does not include a vertical ray, requires a very high
resolution to yield the correct radiative flux.

Conversely, the dependence of F top

rad
on the lower bound-

ary conditions is weak. Table 2 does not show any system-
atic difference with respect to the bottom boundary con-
ditions. Changes occur only on much longer time scales.

The horizontal resolution of all simulations presented
here is sufficient to get the correct effective temperature
and thus the correct radiative flux at the top of the domain
(cf. Asplund et al. (2000); Robinson et al. (2003)).

3.5. Comparison with Closed Boundary Conditions
The main effect of an open bottom boundary is the free

flow through the boundary. In the case of closed bound-
aries, the fluid cannot penetrate the bottom boundary and

14

Fast relaxation near surface since 
tsim > τKH ~ 1h.
Not so, if the entropy at the bottom 
is incompatible ...
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Implications for Modelling I
• Constructing 1D models based on 3D simulations
– Calibrate / tune MLT parameter α: 
• reproduce integral property (L) or local target quantity (entropy jump Δs, sbot)

– Scaling laws from 3D simulations: for entropy as a function of depth, ...
– “Model patching”: use 3D simulation as upper boundary condition
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Implications for Modelling I
• Constructing 1D models based on 3D simulations
– Calibrate / tune MLT parameter α: 
• reproduce integral property (L) or local target quantity (entropy jump Δs, sbot)

– Scaling laws from 3D simulations: for entropy as a function of depth, ...
– “Model patching”: use 3D simulation as upper boundary condition

• Advantages & disadvantages
– Calibrate / tune of MLT parameter α: 
• most popolar, simple, no changes in codes, but different properties of the 

surface layers need different values of α, even as function of depth
– Scaling laws: “easy”... but accurate ones difficult to derive in practice.
– Model patching: 
• carries over results from 3D simulations to 1D models as much as possible, 

but no reliable interpolation algorithm available / known (model grids)
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Implications for Modelling II

Optimum MLT values α for entropy jump Δs throughout the lower part of the HRD for the 
STAGGER grid by Trampedach et al. (2014), MNRAS 445, 4366 (Fig. 4). 

The optimum fit parameter
α to reproduce the 
entropy jump Δs. 

The value found for α 
is sensitive to the exact 
choice of the dependent
variable to be optimized.

Different optimizations
hence yield different
temperature structures.



Constraints on T-! lawsObs. de Paris, site de Meudon, 24 May 2016
27

Lessons from DAs and Cepheids I

To match the point where layers become stable according to the Schwarzschild criterion 
(open circles) and where Fconv changes sign (closed circles) requires different values.

Determining the MLT parameter α for shallow and for deep convection zones in DA 
type white dwarfs with CO5BOLD (Fig. 5 & 11, Tremblay et al. 2015, ApJ 799, 142).
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Lessons from DAs and Cepheids II

2D simulation of the top 42% of a Cepheid (P = 4 d, Teff = 5125 K, log(g) ~ 1.97, R ~ 38.5 R
⊙
, L ~ 913 L

⊙
, 

M = 5 M
⊙
). Fconv as function of radius and phase (10 phases average normalized to [0,1]). Upper/lower 

panel: without/with mean radial motion included. Mundprecht et al. 2015, MNRAS 449, 2539 (Fig. 1).
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Lessons from DAs and Cepheids III

Convective flux parameter α required to match the convective flux of the simulations for 
Stellingwerf's model (SW, left panel) and the simplified Kuhfuß model (KF, right panel) as 
a function of phase (abscissa) and radius (ordinate), averaged over 10 phases.
An optimal α would have to change as a function of local stability (convective & overshooting 
zone), phase, and radius. From the same simulation of Mundprecht et al. 2015, MNRAS 449, 
2539 (Fig. 3) as shown on the previous slide.
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Conclusions

• Conclusions
–  The most promising approach appears to be the patching method:‏
•  3D results carried over as much as possible
•  thermal / pressure structure of 3D simulations is on save grounds

–  For the kinetics & dynamics of the velocity field one has to be much
 more careful: possible influence of boundary conditions

–  Meanwhile one can substitute those approaches with 3D-simulation 
 based calibrations of MLT models, but be aware of their limitations

–  Consider physically more complete models as target for  
 optimizations through 3D simulations

–  As an alternative work out interpolation algorithms for 3D averaged
 simulation data

–  Take PLATO 2.0 as an incentive to develop a library of convection 
 models of different complexity (including averaged 3D simulations)
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