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Basic reqguirements:
stellar radius and mass

Transit gives Rp/Rx,
RVs give Mp/Mx

Errors on Mx & Rx
often dominate errors
on Rp & Mp

Need to know Mx & Rx
to a few %.
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Basic reqguirements:
stellar radius and mass

Rauer et al. (2014)
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Basic reqguirements:
stellar age

 We want to investigate the

2 planets: Minimum mass ratio for detectable trend

dynamical and thermodynamical _,,/———— —r— f
evolution history of the planetary o M| 1
systems we detect 1o
o.o5( Dasmed: LT |/
* E.g.: planet incidence expected 2 ey
to decrease with increasing age £ [..-czz2=-T / //

for tightly packed systems of
multiple planets, can PLATO
detect it? (Veras et al. 2015)

0.5 1.0 15 2.0 25 3.0 3.5 40 4.5 5.0

* Need to know stellar age tx to Atersro / Gy
~10 %.

Veras et al. (2015)




Stellar density and [imb-
darkening

* Transit fit involves a/Rx T
(related to px via Kepler's 3rd i
law) and limb-darkening _
model

Relative Flux

e Asteroseismology: direct,
model-independent constraint

ON Px
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* Not sure if stellar pipeline will -
prOVide any info On |imb_ 0.9-3'15 010 Timc;ol-;?osmC;n?e.?%fTrangi-to(sdays) 10 o1
darkening”

Knuston et al. (2007)



Which properties affect
accuracy of stellar parameters?

 How does the accuracy of px, Mx, Rx, tx depend on
factors such as Teff, activity level, rotation rate”

* Prioritise targets to observe (input catalog) and
later candidates to follow-up where precise stellar
parameters can be expected?



Impact of activity on planet detection

* Transits are typically Solar irradiance (SOHONIRGO)
a lot shorter than o I I B A A AR
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Impact of activity on planet detection

* Transits are typically Solar irradiance (SoHO/VIRGO)
a lot shorter than oA B L e L] B AL B A
the dominant
timescales for
activity

* Activity and
granulation do
matter for shallow,
long-duration (long-
period transits)
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Impact of activity on planet detection

* Jransits are typically
a lot shorter than
the dominant
timescales for
activity

* Activity and
granulation do
matter for shallow,
long-duration (long-
period transits)

* Activity is THE main
issue for RV follow-

up
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Detecting transits in the
presence of activity - |
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Detecting transits in the
presence of activity

Jenkins (2002)
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Detecting transits in the
oresence of activity - Il
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Detecting transits in the
presence of activity - ||

Example from K2 Campaign 7

Normalised flux
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Model activity as a quasi-periodic a Gaussian process.
Simultaneously model pointing-related systematics
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Detecting transits in the
presence of activity - ||

Model activity as a quasi-periodic a Gaussian process.

Example from K2 Campaign 7 Simultaneously model pointing-related systematics

j{ NB: This kind of modelling can give preliminary estimates of rotation period and active §
regions coverage/distribution and litetme o




Detecting transits in the
presence of activity - ||

In a case like this, a-priori information on stellar period

Example from K2 Campaign 7 would help. ..
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Stellar “noise” in RV

short-term: pulsations (F-stars) - 15 min
rotation period:
e spots “photometric” effect - dominates for active stars

* convective blue-shift suppression - dominates for “quiet” stars (like the
Sun)

growth and decay of active regions
activity cycle:
e variation in activity level leads to long-term RV change

o if “butterfly” pattern, dominant rotation period also changes



How WP120 can help with
RV follow-up

Estimates of Prot, activity level?
How stable are the active regions?
Information on stellar inclination”

Activity cycle: when will the star be least / most
active”



Information exchange
between stellar and exoplanet pipelines

elim. P LC detrending & prelim. Prot, active region
& e transit search distribution and lifetimes
Preliminary transit
prelim. px, Mx, Rx, tx modelling &
candidate vetting
v
Prot, activity level, large numbers of
activity cycle ety high-res spectra
e el , limb-darkening parameters
estimates P
Ox, Mx, Rx, tx, Prot, ix, Comparison to

everything elsel!... theory
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* LDTK: the limb-darkening toolkit: (Parviainen & Aigrain 2015,
MNRAS, 453, 3821)

* Automatic, efficient calculation of custom stellar limb-darkening
profiles and model-specific limb-darkening coefficients using
the PHOENIX-generated specitfic intensity spectra

* Code at https://github.com/hpparvi/ldtk

e Smear photometry of very bright Kepler & K2 stars (Pope et al.
2016, MNRAS, 455, 36L)

* Thought your favourite object was too bright, or observed only
in a few Kepler quarters?” We may be able to retrieve it for you...



Advertisement break

* Detrending K2 data while preserving variability using
GPs: Aigrain et al. (2016, MNRAS, 459, 2408)

* [ower systematics than both SAP and PDC, much
petter preservation of intrinsic stellar signals than
PDC or other K2 pipelines

* readily adapted for short cadence data
 Light curves at https://archive.stsci.edu/prepds/k2sc/

» Code at https://github.com/OxES/k2sc



https://github.com/OxES/k2sc

