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Abstract. The false alarm probability for detecting peaks embedded in a power spectrum of noise was given
by Scargle (1982). This test has been used in helioseismology to detect long-lived modes such as g modes
(Appourchaux et al. 2000). With the development of asteroseismology, there is now a need to define a simi-
lar test but for short-lived p modes. In this article, I define a false alarm test for detecting short-lived p modes,
and [ give the probability of detecting such modes given their signal-to-noise ratio, their linewidths and the

duration of observation.
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1. Introduction

The false alarm detection probability of a coherent peri-
odic signal embedded in a power spectrum of noise was
given by Scargle (1982). This test has been used in helio-
seismology to detect long-lived oscillation modes known
as g modes (Appourchaux et al. 2000; Gabriel et al. 2002;
Turck-Chiéze et al. 2004). The probability as given by
Scargle (1982) belongs to the HO hypothesis class, i.e. what
1s observed 1s pure noise. The detection probability based
on the H1 hypothesis has been given by Gabriel et al.
(2002) based on assuming that a periodic signal is present
with a given amplitude embedded in a power spectrum
of noise. The H1 hypothesis requires that the inclusion of
the periodic signal in the noise is subject to a given set of
assumptions, e.g. how the signal (mode) excited is, or its
amplitude. The detection probability derived from the H1
hypothesis does not test for the presence of the periodic
signal but tests the probability that it can be detected
given these assumptions.

The tests described above are now well understood and
utilized when looking for long-lived modes or g modes.
With the advent of asteroseismology, there is a growing
need for a proper testing of what is going to be detected.
Detection of solar-like p modes in &« Cen A and B has
been recently reported (Bouchy & Carrier 2002; Carrier
& Bourban 2003). The modes detected are short-lived p
modes for which the usual tests are irrelevant. Here I de-
velop two tests based on the HO and H1 hypothesis. The
former will assess the probability that a peak of a given
width is due to noise. The latter will give the detection

probability of a p mode as a function of the linewidth,
signal-to-noise ratio and length of observation.

2. Hypothesis testing
2.1. HO hypothesis

The simplest way to detect short-lived p modes is to bin
the power spectrum over a different number of bins. In
the case of the HO hypothesis, we assume that what is
observed is pure noise, i.e. x? with 2 degrees of freedom.
When binning over p bins, the statistics becomes y? with
2p degrees of freedom. The probability of having a peak
above a given level s in the binned power spectrum is given

by:
too p—1
P(s'Zs,p):/ ¥ .

where S is the mean of the power spectrum, p is the num-

ber of bins over which the spectrum is binned without nor-
malization (See Appourchaux 2003), i.e. the mean in the
binned power spectrum is Sp, T'(p) is the Gamma func-
tion, and u is a mute variable. It is interesting to compute
how the binning affects the detection level. For a given
confidence level, say 10%, we solve the following:

P(s' > 5,p) = 10% (2)

Figure 1 shows the normalized level s/p, derived from
Eq. (2), for two confidence levels. Figure 1 shows that
binning does lower the detection level, as expected.
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Fig. 1. Detection level as a function of the number of binned
frequencies p, for a probability of 10% (dash line) and 5% (solid
line). For p = 1 we have the regular value of 2.3 ¢ and 3 o
values.

2.2. H1 hypothesis

Here I will calculate the probability that one can detect a
mode given its characteristics (amplitude, linewidth), the
background noise and the duration of observation. The
detection is made by binning the power spectrum over p
bins. The binning requires us to compute the statistic of
the partial power of a mode profile. Hereafter, I provide
the analytical derivation of that statistic and a more use-
ful approximation that facilitates the computation of the
probability in practice.

2.2.1. Analytical derivation

In this case we assume that the observed p modes can be
described in the power spectrum as:
r
fw)

R =

+1 (3)

where 7 is the signal-to-noise ratio (=A/B) ratio of mode
amplitude to background noise, I' is the linewidth, v is
the frequency, vy is the mode frequency. * Here we would
like to assess the probability of detecting such a mode
in the power spectrum when that spectrum is smoothed
over p bins. The statistics of each bin is a x? with 2 d.o.f
with a mean given by Eq. (2) at v = vy, fi = f(v;). The
statistic is computed using the characteristics function.
That function for the partial power in a mode profile can

be derived from Gabriel (1994) as:

szﬂggﬂ (4)

! Here I would like to point out that the concept of the signal-
to-noise ratio was introduced by Libbrecht (1992) as stated
above. It does not make sense to express the the signal-to-
noise ratio as (A + B)/B as one would naively think. It would
mean that the signal-to-noise ratio would be 1 when there is
no mode.

After decomposing that equation onto simple elements,
the probability density function (pdf) of the partial power
S is given as:

=P -8/fi 1
p(S):ZZ:; fi Hk;éi(l_fk/fi) )

Equation (5) becomes singular when the profile is summed
symmetrically around vg. In this case, I calculate the char-
acteristic function of the product of y? with 4 d.o.fas given

by:

i=p/2

Fv)y=]]

i=1

1
—_ 6
(1 —uvf;)? (6)
Here p is even by construction. We use the previous simple
element decomposition to find that the pdf is given by:

L2 ge-Sit
Se 1
p(S) = ZZ:; fiz Hk;ﬁi(l — i/ fi)?
=2y —5/fi 1 (7)
i1 fi Hk;&i(l - fk/fl)
1 1
. ; (L=1;/f) Hj;ék(l = Ji!f5)

Unfortunately, Eqs. (5) and (7) become highly divergent
when the smoothing is performed over a large number of
bins, typically greater than 8. The divergence appears for
very small values of § while 1t should give a value close to
7€ero.

2.2.2. Approximation
I found that Eq. (5) (and thereby Eq. (7) could be ap-

proximated by a Gamma law given by:

Al/
S) = Su—l A8 8]
p(S) ) € (8)
The mean and o are given by:
Em:§
) ©)
o = F
A and v are then derived from the mean and o as:
E[S
N
i (10)
E[s)?
=—

In our case the mean E[S] and o are given by:

BS) =Y
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2.2.3. Detection probability

The detection probability is then given by:

+oo
P(s >s) = / p(u)du (12)

where p(v) is given by Eq (5) or (7) for the analytical
derivation and by Eq (8) for the approximation, and the
cutting level s is given by Eq (1) for a predetermined con-
fidence level (e.g. 5%).

Given the numerical difficulties encountered with the
analytical formulation, I checked that the approxima-
tion given above provides accurate results when compared
with the analytical formula, even for low binning values.
Figure 2 gives the relative probability difference between
the analytical formula and the approximation for an ob-
serving time of 100 days and a linewidth of 1 puHz. The
largest differences occur for low signal-to-noise ratio and
large binning values. These differences are due to the di-
vergence of the analytical formula, and not the result of
the approximation used. In most cases, the relative error
on the probability will not be larger than 0.001.

Figure 3 gives the maximum detection probability us-
ing the density probability given by Eq. (8) with A and v
derived from Eq. (10) and (11). Of course, the maximum
detection probability is reached when smoothing symmet-
rically over a mode profile.

3. Discussion

The results provided by the analytical calculation and by
the approximation are quite consistent with expectation.
The detection probability increases with the number of
smoothing bins until the number of bins becomes larger
than the linewidth of the mode (visible in the upper left
diagram of Fig. 3). For a given linewidth, the detection
probability will increase with the duration of observation.
The detection probability only depends upon the number
of bins in a profile. Therefore, the probability only depends
upon the product of the linewidth and the observation
time, 1.e. the probability is the same for a linewidth of 0.5
#Hz and an observation time of 200 days as for a linewidth
of 1 pHz and an observation of 100 days.

The detection probability ranges from 20% for narrow
modes up to 80% for larger modes for a signal-to-noise ra-
tio of 1. A typical 50% figure is a good order of magnitude
for the mean detection probability. This means that over
10 detectable modes, an average of 5 will detected.

4. Conclusion

I showed that one can easily compute the maximum de-
tection probability of a p mode using Eq. (8) with A and v
derived from Eqs. (10) and (11). This detection probabil-
ity can be used in asteroseismology by the future space
mission COROT or by the ground-based spectrometer
HARPS.

Acknowledgements. This article is the result of a casual discus-
sion between Eric Michel and the author. Thanks to Patrick
Boumier for pointing out the inconsistencies of an earlier ver-
sion. | am grateful to the referee for making constructive com-
ments.

References

Appourchaux, T. 2003, A&A, 412, 903

Appourchaux, T., Frohlich, C.; Andersen, B., et al. 2000,
AplJ, 538, 401

Bouchy, F. & Carrier, F. 2002, A&A, 390, 205

Carrier, F. & Bourban, G. 2003, A&A, 406, .23

Gabriel, A. H., Baudin, F., Boumier, P., et al. 2002, A&A,
390, 1119

Gabriel, M. 1994, A&A, 287, 685

Libbrecht, K. G. 1992, ApJ, 387, 712

Scargle, J. D. 1982, ApJ, 263, 835

Turck-Chieze, S., Garcia, R. A., Couvidat, S., et al. 2004,
AplJ, 604, 455



4 T.Appourchaux: On detecting short-lived p modes in a stellar oscillation spectrum

2 bins 4 bins
6x1075] T ] 0.0002 F T ]
(] () L ]
3] b 1 13} [ ]
= L | =] C ]
bt 5L I r ]
5 4x10 I 1 5 g 3
£ i 1= 0.0001 ¢ 1
kel L | o [ ]
2 R’x107p 102 g 1
2 I 1 3 0.0000F ]
£ f | 2 : :
o 0 1 o E ]
~ = B ~ = B
Q L | o5 r ]
0 i 1 2 —0.0001F 7
£ —2x1075 1 3 ; ]
© H 4 ® F ]
© H 1 F ]
= L ] ~ L ]
—4x107% . . —0.0002¢t . b
0 2 4 6 8 10 0 2 4 6 8 10
Signal—to—noise ratio Signal—to—noise ratio
8 bins 16 bins
0.0010[ . 1 0.02[ . 1
o o [ i
O = B O
; : I 5 ooof *
3 I 1 g 000f 1
& 0.0005 8 = i ]
o L i © -0.021 B
> L ] . H j
= I 1z i ]
2 0.0000 = 8 —0.04F 8
© L ] © . i
2 2 H 7
: ’ ] f |
o, L ] o, —0.06 N ]
£ -0.0005 7 2 I ]
I t g W —0.081 T
T - . [ [ ]
o=t L i = [ i
-00010 Lo . o v -010L . .
0 2 4 6 8 10 0 2 4 6 8 10
Signal—to—noise ratio Signal—to—noise ratio

Fig. 2. Relative probability difference (analytical-approximation) as a function of the signal-to-noise ratio for various numbers
of smoothing bins for a 100-day observing time and a 1-uHz linewidth. The predetermined confidence level used for computing
the cutting level s is 5%. The probability density are given by Eq (5) or (7) (analytical) and by Eq. (8) (approximation).



T.Appourchaux: On detecting short-lived p modes in a stellar oscillation spectrum 5

T obs.=100 days, '=0.500 nHz

T obs.=100 days, '=1.000 uH

1.0 e UriE e e L R 1.0[ e E T ]
> >
= =
2 2
© ©
Qo Q
° o
= =
e, o,
c c
o °
= B
© 0
o o
o o
9 o
a a

0.1 . . . . N 0.1

1 10 1 10
Signal—to—noise ratio Signal—to—noise ratio
T obs.=100 days, '=2.000 uH T obs.=100 days, =4.000 uHz

1.07 ,/’/llr’/rj:lﬂéri,i‘»—"""""' ,,,,, ‘7 1.0 ’/~/'/Vl‘777//~‘~/trf,,?r*"""”l” ,,,,,,,
> >
= =
o o
© ©
2 2
o o
~ —~
o, Q,
c c
o o
P b
% 0
o o
- -
o o)
a a

0.1 s s s N 0.1

1 10 1 10
Signal—to—noise ratio Signal—to—noise ratio

Fig. 3. Maximum detection probability as a function of the signal-to-noise ratio for various numbers of smoothing bins (2,
continuous line; 4 dotted line; 8 dashed line; 16 dashed-dotted line) for various linewidths and observing times. The predetermined
confidence level used for computing the cutting level s is 5%. The probability density is an approximation as given by Eq. (8).



