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Abstract. Low-angular-degree solar p modes provide a sensitive probe of the radiative interior and core of the Sun. Estimates of
their centroid frequencies can be used to constrain the spherically symmetric structure of these deep-lying layers. The required
data can be extracted from two types of observation: one where the modes are detected in integrated sunlight, i.e., a Sun-as-a-
star view; and a second where the visible disc is imaged onto many pixels, and the collected images then decomposed into their
constituent spherical harmonics. While the imaging strategy provides access to all of the individual components of a multiplet,
the Sun-as-a-star technique is sensitive to only just over half of these, with those modes that are detected having different levels
of visibility. Because the various components can have contrasting spatial structure over the solar surface, they can respond very
differently to changes in activity along the solar cycle. Since the Sun-as-a-star and resolved analyses take as input a different
‘subset’ of modes, the extracted frequency estimates are expected to differ depending upon the phase of the cycle. Differences
also arise from the types of models used to fit the modes. Here, we present expressions that allow the sizes of the differences to
be predicted.

1. Introduction

The structure of the deep radiative interior of the Sun can
be inferred from observational estimates of the frequen-
cies of core-penetrating, low-angular-degree (low-l) solar p
modes. This is accomplished by inversion of the frequencies
(Christensen-Dalsgaard 2002). Estimates of the low-degree pa-
rameters come from two ‘types’ of observation. In the first,
the Doppler velocity or intensity perturbations associated with
the modes are averaged over the visible disc by observations
that detect them in integrated sunlight, i.e., a full-disc [FD]
or ‘Sun-as-a-star’ view. Examples of this type of observa-
tion include the ground-based Birmingham Solar-Oscillations
Network (BiSON; Chaplin et al. 1996) and the GOLF (Gabriel
et al. 1995) and VIRGO/SPM (Fröhlich et al. 1997) instru-
ments on board the ESA/NASA SOHO satellite. In the second,
the solar disc is imaged over many pixels. The collected im-
ages are then decomposed into their constituent spherical har-
monics. For each overtone, n, and degree l, this gives 2l + 1
spectra (where m is the azimuthal order, and −l ≤ m ≤ l).
Resolved [RES] observations are currently being made by,
amongst others, the ground-basedGlobal Oscillations Network
Group (GONG; Harvey et al. 1996), and the MDI (Scherrer et
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al. 1995) and VIRGO/LOI (Appourchaux et al. 1995) instru-
ments on board SOHO.

Inversions and comparisons are often made using combina-
tions of Sun-as-a-star and resolved low-l frequencies. However,
even when contemporaneous data are used, the frequencies rep-
resent estimates of different underlying quantities, i.e., there is
an inherent bias between the two sets. This reflects two things:
first, the different way in which the two types of estimates are
affected by changes in activity over the solar cycle; and to a
lesser extent, the manner in which the data are analyzed to ex-
tract estimates of the frequencies.

The activity-dependent differences can be a cause for con-
cern. Linear inversion formalism expresses the small differ-
ences between observed and modelled frequencies as arising
from a linear combination of differences in the interior sound
speed and density, with an additional ‘surface’ term that allows
for inadequacies in modelling the near-surface layers (e.g.,
departures from adiabaticity; see Christensen-Dalsgaard et al.
2000 for an in-depth discussion). This term is usually regarded
as being spherically symmetric. As such, any l dependence
comes in only through the variation of mode inertia with an-
gular degree. However, the differences we discuss here arise
from non-spherically-symmetric effects which are sensitive to
the azimuthal projection of the mode,m. Our aim in this contri-
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bution is to formalize the differences in terms of quantities that
are measurable over the activity cycle and to provide a useful
reference for those less familiar with procedures used to extract
mode frequencies.

2. What is a ‘resolved’ or ‘Sun-as-a-star/Full Disc’
mode frequency?

2.1. Resolved frequency estimates

The full set of m frequencies extracted from resolved-Sun ob-
servations are usually described using a polynomial expansion
of the form:

νnl,m = ν
RES
nl +

jmax∑
j=1

a j(n, l) lP j
l (m). (1)

where the basis functions are polynomials related to Clebsch-
Gordan coefficients (Ritzwoller & Laveley 1991). The first six
of these are given in Appendix A.

The offset term in the expansion, νRESnl , is the so-called cen-
tral frequency of the multiplet (i.e., its centroid). Here, we tag
it with ‘RES’ to show it comes from the resolved-Sun data. It
is these centroid frequencies that are used as input to inver-
sions to find the spherically symmetric component of the inter-
nal structure. The odd a j coefficients describe spherically sym-
metric contributions to the splittings within a multiplet, e.g.,
from the internal rotation; while the even a j reflect perturba-
tions that are non-spherically symmetric in nature, e.g., from
the influence of the spatially inhomogeneous magnetic activity
over the solar surface. While temporal variations in the low-
order odd a j remain undetected (i.e., a1, a3 and a5), significant
changes have been uncovered in both the centroid frequencies
and even a j that are well-correlated with the solar activity cy-
cle (e.g., Dziembowski et al. 2000; Antia et al. 2001; Howe,
Komm & Hill 2002; Appourchaux, Anderson & Sekii 2002).

The upper panel of Fig. 1 shows the distribution of compo-
nents that can arise in the l = 2, n = 21 overtone at ∼ 3160 µHz
under conditions of high surface activity. Each symbol corre-
sponds to a different m (as indicated on the ordinate), with
the location of the datum on the abscissa corresponding to
the frequency offset of the component (here, with respect to
the location of the m = 0). By far the largest contribution to
the asymmetric arrangement comes from a non-zero a 2 of size
∼ 0.1 µHz; that from the a4 coefficient is negligible in compar-
ison. The solid vertical line shows the location of the centroid
frequency νRESnl .

In summary, since every component can be observed the
multiplet frequencies, νRESnl , reflect the contribution of all 2l+ 1
modes. As we shall see, this is not the case for Sun-as-a-star
observations.

2.2. Sun-as-a-star frequency estimates

The visibility of a mode observed in integrated sunlight de-
pends upon the average of its displacement pattern over the
disc, and the projection of this with respect to the preferred axis
of the system, i.e., that of the solar rotation. When observations

Fig. 1. Upper panel: distribution of components expected in resolved
data – when allm can be detected – for the l = 2, n = 21 (∼ 3160 µHz)
mode at levels of high activity. Each symbol corresponds to a given m
(as indicated on the ordinate), whose location on the abscissa corre-
sponds to the frequency offset of the component (here, with respect to
the location of them = 0 component). The solid vertical line shows the
location of the centroid frequency νRESnl . Lower panel: Frequency loca-
tions of the three l = 2 components visible in Sun-as-a-star data (thick
bars). The vertical dashed (νFDtradn,l ) and dotted (νFDcenn,l ) lines are the
Sun-as-a-star frequencies extracted by fitting two types of model (see
text for more details). The solid vertical line again shows the resolved-
data centroid for comparison.

are made in or close to the ecliptic plane – meaning that the ro-
tation axis is at near right-angles – only those components for
which l + m is even are clearly visible. Furthermore, the sensi-
tivity to different azimuthal orders means that at l ≥ 1 the outer
components are observed to be the most prominent. This is the
perspective offered from both ground-based and SOHO-borne
instruments.

Since not all the constituent components are seen, and those
that are have different visibilities, mode frequencies derived
from such data are weighted strongly by the contribution from
particular |m|. As noted above, it is those with |m| = l that carry
by far the largest weight. At l = 1 it is only these components
that are seen. In BiSON and GOLF observations at l = 2 and
3 they are approximately two-times and five-times stronger in
power respectively than the other visible components in the
multiplet. This is illustrated for an l = 2 mode in the lower
panel of Fig. 1. The three solid bars show the locations of the
observed components (offset with respect to m = 0), with the
height on the ordinate a measure of the relative power seen in
a BiSON frequency spectrum.

A set of Sun-as-a-star observations gives a single time
series whose frequency spectrum will contain many closely
spaced resonant peaks. This means that any fitting strat-
egy must fit the components of a multiplet simultaneously.
Furthermore, when l ≥ 2 those peaks that are visible will be
distributed unevenly in frequency at moderate to high levels of
activity. Because of the close spacing, and the relative weak-
ness of the inner components, it is very difficult to fix or de-
termine this distribution reliably. This is why it has long been
standard practice to fit a model that takes no account of the un-
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even spacing. As such, this ‘traditional’ fitting method assumes
all peaks in a multiplet are spaced symmetrically in frequency.
We shall refer to estimates extracted in this manner as νFDtradn,l .
The vertical dashed line in the lower panel of the Fig. 1 shows
the frequency that would be derived from fitting such a model
to the l = 2 mode as shown. For comparison, the resolved-data
centroid, νRESnl , is shown as the vertical unbroken line. The two
clearly do not coincide.

In spite of these difficulties, Chaplin et al. (2003) have
shown that one can attempt to take account of the uneven spac-
ing provided the dataset is of sufficient length (thereby giving
the required resolution). This in effect allows one to estimate
the locations of each of the component frequencies. A value for
the centroid (i.e., straight forward average) of the visible Sun-
as-a-star/full-disc frequencies can then be derived. This we re-
fer to as νFDcenn,l . This is rendered as a vertical dotted line for the
example in Fig. 1; again, there is an offset with respect to the
‘resolved’ νRESnl .

3. Difference in frequency estimates

Our treatment that follows takes no account of potential bias
introduced by temporal (from the observational window func-
tion) and spatial (from the resolved-data decomposition) leak-
age. Furthermore, we do not consider small differences in fre-
quency that can arise from offsets in mode-peak asymmetry be-
tween datasets. Various studies have shown that this has a con-
tribution that depends upon the nature of the observing tech-
nique. On the assumption that allowance has been made for
these and other potential sources of analysis bias, we would
expect the Sun-as-a-star and resolved estimates of the radial
(l = 0) mode frequencies to be measures of the same un-
derlying parameter (provided the data are contemporaneous).
However, at l ≥ 1 we must allow for the influence of the chang-
ing activity.

3.1. Dipole (l = 1) modes

The frequencies of the dipole components visible in Sun-as-
a-star data can be written explicitly in terms of the resolved-
data centroid frequency and the a j coefficients [see Eq. (1) and
Appendix A], i.e.,

νn,1,1 = ν
RES
nl + a1(n, 1) + a2(n, 1), (2)

and

νn,1,−1 = νRESnl − a1(n, 1) + a2(n, 1). (3)

Since only two components are seen in the full-disc data, the
extracted frequency estimate will be the simple average of the
corresponding frequencies, i.e.,

νFDtradn,1 = νRESn,1 + a2(n, 1). (4)

The ‘traditional’ fitting method provides the necessary means
of obtaining this. The difference between the full-disc and re-
solved frequencies is therefore dependent upon the magnitude
of the a2 coefficient. For a mode near the centre of the p-mode
spectrum this may be as large as ≈ 0.1 µHz at times of high
activity.

3.2. Quadrupole (l = 2) modes

At l = 2, the three components observed in Sun-as-a-star data
are:

νn,2,2 = ν
RES
nl + 2a1(n, 2) + 2a2(n, 2) + 2a3(n, 2) + 2a4(n, 2), (5)

νn,2,0 = ν
RES
nl − 2a2(n, 2) + 12a4(n, 2), (6)

and

νn,2,−2 = νRESnl − 2a1(n, 2) + 2a2(n, 2) − 2a3(n, 2) + 2a4(n, 2).(7)
The presence of the extra central component – which may be
unevenly distributed in frequency between the outer compo-
nents – now complicates the fitting. As noted in Section 2.2,
different frequency estimates can be extracted dependent upon
the nature of the fitting model. In the ‘traditional’ method, the
model assumes the m = 0 peak lies symmetrically between the
outer peaks. Under circumstances where all even a j are zero,
this provides an accurate description and the fitted frequency
will be the mean of the locations of the |m| = 2 components. In
practice, the presence of non-homogeneous activity means the
model is inaccurate. The fitted value will then be ‘pulled’ by
the inner, weaker component in the direction of the outer peak
that lies closest to it.

The extracted value is therefore no longer the mean of the
outer-peak frequencies, but some linear combination of these
and the m = 0 frequency. If Sn is the fractional contribution of
the (2,0) component, the fitted νFDtradn,2 can be represented by

νFDtradn,2 = Sn · νn,2,0 + (1 − Sn) ·
[νn,2,2 + νn,2,−2

2

]
. (8)

Given Eqs. (5), (6) and (7) – which describe the individual
component frequencies – it then follows that the ‘traditional’
frequency will be related to the resolved-data centroid by:

νFDtradn,2 = νRESnl + (2 − 4Sn) · a2(n, 2) + (2 − 10Sn) · a4(n, 4). (9)
Chaplin et al. (2004) showed that for BiSON dataSn ∼ 0.1. So,
even though a (2,0) mode has a height in the power spectrum
that is ∼ 55% of that of its (2,2) neighbours, its influence on the
fitted frequency is somewhat less than would be implied by a
simple linear scaling with the visibility ratio. For a mode at the
centre of the spectrum the difference between νRESnl and νFDtradn,2
may be as large as ≈ 0.17 µHz at times of high activity.

Provided the dataset is of sufficient length an attempt can be
made to fit for the locations of all three Sun-as-a-star compo-
nents. If the frequency thereby extracted, νFDcenn,2 , corresponds to
the mean (unweighted centroid) of the three visible modes we
have:

νFDcenn,2 =
1
3
· [νn,2,2 + νn,2,0 + νn,2,−2]

= νRESnl + 0.67a2(n, 2) + 5.33a4(n, 2). (10)

The difference between this and the resolved-Sun centroid can
rise to ≈ 0.07 µHz (again for a mode near ≈ 3000 µHz).
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3.3. Octupole (l = 3) modes

At l = 3, the four components seen in Sun-as-a-star data are:

νn,3,3 = ν
RES
nl + 3a1(n, 3) + 3a2(n, 3) + 3a3(n, 3) + 3a4(n, 3)

+ 3a5(n, 3) + 3a6(n, 3), (11)

νn,3,1 = ν
RES
nl + a1(n, 3) − 1.8a2(n, 3) − 3a3(n, 3)

+ a4(n, 3) + 15a5(n, 3) + 45a6(n, 3), (12)

νn,3,−1 = νRESnl − a1(n, 3) − 1.8a2(n, 3) + a3(n, 3)

+ a4(n, 3) − 15a5(n, 3) + 45a6(n, 3), (13)

and

νn,3,−3 = νRESnl − 3a1(n, 3) + 3a2(n, 3) − 3a3(n, 3) + 3a4(n, 3)

− 3a5(n, 3) + 3a6(n, 3). (14)

Again, two fitting strategies can be adopted. For the traditional
model Sn is now the fractional contribution of the (3,1) and
(3,-1) frequencies to the symmetric-model frequency, i.e.,

νFDtradn,3 = Sn ·
[νn,3,1 + νn,3,−1

2

]
+ (1 −Sn) ·

[νn,3,3 + νn,3,−3
2

]
.(15)

The extracted frequency is then given by

νFDtradn,3 = νRESnl + (3 − 4.8Sn) · a2(n, 3) + (3 − 2Sn) · a4(n, 3)

+ (3 + 42Sn) · a6(n, 3). (16)

The second strategy, which attempts to fix the precise locations
of all four peaks, is much more difficult to apply at l = 3.
Indeed, a robust determination of the underlying distribution
of peaks has not yet been extracted from Sun-as-a-star data.
This is because the strongest, outer modes have peak heights
that are only ∼ 36% of that of their l = 2, |m| = 2 counterparts
(BiSON data). In addition, the height contrast between the in-
ner and outer peaks is greater than for the quadrupole modes.
Nevertheless, we include here an expression relating the un-
weighted mean of the four visible Sun-as-a-star components –
an estimate that could be extracted from the successful appli-
cation of an asymmetric-fitting model – to the resolved-data
centroid:

νFDcenn,3 =
1
4
· [νn,3,3 + νn,3,1 + νn,3,−1 + νn,3,−3]

= νRESnl + 0.6a2(n, 3) + 1.5a4(n, 3) + 24a6(n, 3). (17)

4. Summary

We have presented expressions that describe the differences be-
tween low-l p-mode frequencies extracted from full-disc, ‘Sun-
as-a-star’ and resolved-Sun observations. These are given in
terms of the even-a j coefficients used to describe the expansion
of all 2l+1 components detected by resolved-Sun observations.
Only l + 1 of these can be seen clearly in Sun-as-a-star data.

In all cases the basic resolved-data frequency used was the
offset term, νRESnl , in the expansion of the component frequen-
cies. This is often called the central frequency of the multiplet
(i.e., its centroid).

Two classes of frequency extracted from full-disc, Sun-as-
a-star data were considered. First, that given by the ‘traditional’
fitting approach, νFDtradnl , in which the components within a mul-
tiplet are assumed to be distributed evenly in frequency. And
second, from a model in which the components can be dis-
tributed unevenly as is observed in the presence of strong, non-
homogeneous surface activity. The estimate thereby extracted,
νFDcennl , is taken as the mean of the observable components.
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Appendix A: Basis Functions

The following polynomials, P j
l (m), are the basis functions used to parameterize the frequency-multiplet expansion for low-l,

resolved observations [cf. Eq. (1)]. In each case L 2 = l(l + 1).

P1l (m) = m/l,

P2l (m) =
6m2 − 2L2
6l2 − 2L2 ,

P3l (m) =
20m3 − 4m(3L2 − 1)
20l3 − 4l(3L2 − 1) ,

P4l (m) =
70m4 − 10m2(6L2 − 5) + 6L2(L2 − 2)
70l4 − 10l2(6L2 − 5) + 6L2(L2 − 2) ,

P5l (m) =
252m5 − 140m3(2L2 − 3) + m(20L2(3L2 − 10) + 48)
252l5 − 140l3(2L2 − 3) + l(20L2(3L2 − 10) + 48) ,

and

P6l (m) =
924m6 − 420m4(3L2 − 7) + 84m2(5L4 − 25L2 + 14) − 20L2(L4 − 8L2 + 12)
924l6 − 420l4(3L2 − 7) + 84l2(5L4 − 25L2 + 14) − 20L2(L4 − 8L2 + 12) .




