

Planck Early Results: Calibration of the local galaxy cluster SZ scaling relations

Etienne Pointecouteau (IRAP, Toulouse) & Gabriel Pratt (CEA, Saclay)

on behalf of the Planck Collaboration

We want to measure SZ scaling relations for local clusters:

Astrophysics

ratio between gas mass weighted and X-ray spectroscopic weighted temperature depends on cluster thermodynamics
X-ray predictions for pressure signal vs SZ

Cosmology

robust local constraint on relationship between global observable (Y_{SZ}) and mass (via low-dispersion mass proxy,Y_X)
baseline for further evolution studies...

→ investigate correlations between: Y_{SZ} and $M, T_X, L_X, M_{gas...}$ → key relation: Y_{SZ} - Y_X

Earlier works

- ► 15 Suzie+OVRO/BIMA clusters Benson et al. 2004
- > 24 Suzie+OVRO/BIMA Morandi et al. 2007
- ▶ 38 OVRO/BIMA clusters Bonamente et al. 2008 ^(*)

β-model up to δ=2500 0.1 < z < 0.9

State of the Art

AMiBA

• observation of 6 nearby massive clusters (Liao et al. 2010)

SPT

 observations of 15 clusters, 0.25 < z < 1.0 only 1 below z < 0.3

(Vanderlinde et al. 2010, Andersson et al. 2010)

We can do far better with Planck

- Combining a high S/N Planck sample...
 - Very high-quality data
 - All sky survey (16 times larger than SPT)
 - Largest local sample (i.e. most with $z \le 0.3$)

...with deep X-ray observations with XMM-Newton

- Very high-quality data ; superior spectroscopic capabilities
- Break certain innate degeneracies in *Planck* data (e.g., size - flux)

Initial data - ESZ sample

Planck data

- I58 known X-ray clusters in ESZ: S/R > 6
- ▶ 62 Planck clusters (ESZ) with fitted XMM-Newton data

XMM-Newton data

- archive selected sample
- X-ray data analysis as in Arnaud et al. 2002
 Pointecouteau et al. 2004
 Croston et al. 2006
 Pratt et al. 2007
 Bourdin et al. 2010
- Derived physical quantities
 - ne(r) deprojected + T_X
 - ► L_X, Y_X, M, M_{gas}
 - refined Y_{SZ} (prior on size and position from X-rays)

X-ray gallery

X-ray gallery

A local sample of 62 Planck clusters

Table 1: X-ray and SZ properties. The temperature T_X is measured in the $[0.15 - 0.75]R_{500}$ region, and the luminosity $L_{X,500}$ is measured interior to R_{500} in the [0.1 - 2.4] keV band. The final column indicates whether the cluster is classified as a cool core system, defined as described in Sect. 3.4.

Name	RA	Dec	z	R ₅₀₀	T_{χ}	M _{8,500}	Y _{X,500}	$D_{A}^{2} Y_{500}$	M ₅₀₀	L _{X,500}	CC
	(deg)	(deg)	201222	(kpc)	(keV)	$(10^{14} M_{\odot})$	$(10^{14} \text{ M}_{\odot} \text{ keV})$	(10 ⁻⁴ Mpc ²)	$(10^{14} M_{\odot})$	(10 ⁴⁴ erg s ⁻¹)	
RXC J0014.3-3022	3.58	-30.38	0.307	1358	7.72 ± 0.25	1.65 ± 0.01	12.73 ± 0.51	1.74 ± 0.21	9.78 ± 0.21	13.35± 0.09	
A85	10.44	-9.37	0.052	1206	5.78 ± 0.22	0.66 ± 0.01	3.84 ± 0.19	0.47 ± 0.05	5.30 ± 0.31	4.65 ± 0.02	1
RXC J0043.4-2037	10.84	-20.61	0.292	1152	5.82 ± 0.20	0.88 ± 0.01	5.10 ± 0.20	1.40 ± 0.17	5.88 ± 0.14	8.26 ± 0.08	
A119	14.02	-1.30	0.044	1114	5.40 ± 0.23	0.45 ± 0.01	2.45 ± 0.14	0.27 ± 0.03	4.12 ± 0.23	1.52 ± 0.01	
RXC J0232.2-4420	38.06	-44.37	0.284	1223	6.41 ± 0.20	1.07 ± 0.01	6.86 ± 0.26	0.86 ± 0.13	6.95 ± 0.15	12.53 ± 0.09	1
A401	44.73	13.56	0.075	1355	7.26 ± 0.44	1.02 ± 0.04	7.43 ± 0.58	0.83 ± 0.08	7.65 ± 0.67	5.82 ± 0.04	
RXC J0303.8-7752	46.00	-77.88	0.274	1251	7.88 ± 0.36	0.96 ± 0.02	7.58 ± 0.45	1.09 ± 0.13	7.37 ± 0.25	7.39 ± 0.07	
A3112	49.51	-44.26	0.070	1062	5.02 ± 0.15	0.40 ± 0.01	2.03 ± 0.07	0.18 ± 0.03	3.67 ± 0.16	3.84 ± 0.02	1
A3158	55.72	-53.60	0.060	1124	5.00 ± 0.18	0.53 ± 0.01	2.66 ± 0.12	0.35 ± 0.03	4.29 ± 0.23	2.66 ± 0.01	
A478	63.35	10.45	0.088	1326	6.43 ± 0.19	1.06 ± 0.03	6.81 ± 0.26	0.92 ± 0.08	7.23 ± 0.48	12.33 ± 0.05	1
A3266	67.83	-61.42	0.059	1354	7.46 ± 0.22	0.96 ± 0.02	7.17 ± 0.30	0.90 ± 0.07	7.51 ± 0.51	4.22 ± 0.01	
A520	73.55	2.96	0.203	1325	7.74 ± 0.22	1.13 ± 0.01	8.75 ± 0.32	0.99 ± 0.14	8.11 ± 0.16	7.11 ± 0.04	
RXC J0516.7-5430	79.17	-54.52	0.295	1266	7.11 ± 0.67	1.20 ± 0.06	8.50 ± 1.06	1.29 ± 0.10	7.82 ± 0.60	7.27 ± 0.38	
RXC J0528.9-3927	82.22	-39.44	0.284	1218	6.04 ± 0.32	1.11 ± 0.02	6.73 ± 0.46	1.18 ± 0.13	6.88 ± 0.25	10.55 ± 0.11	1
RXC J0532.9-3701	83.23	-37.02	0.275	1190	6.84 ± 0.26	0.85 ± 0.01	5.82 ± 0.28	0.97 ± 0.13	6.35 ± 0.17	8.40 ± 0.07	1
RXC J0547.6-3152	86.89	-31.90	0.148	1150	6.10 ± 0.14	0.60 ± 0.01	3.63 ± 0.10	0.45 ± 0.07	5.01 ± 0.08	3.89 ± 0.02	
A3376	90.47	-39.99	0.045	930	3.39 ± 0.09	0.28 ± 0.01	0.94 ± 0.03	0.10 ± 0.02	2.39 ± 0.06	0.92 ± 0.01	
RXC J0605.8-3518	91.48	-35.29	0.139	1059	4.93 ± 0.11	0.46 ± 0.01	2.29 ± 0.07	0.47 ± 0.06	3.87 ± 0.06	4.74 ± 0.02	1
RXC J0645.4-5413	101.39	-54.21	0.164	1303	7.26 ± 0.18	1.01 ± 0.01	7.33 ± 0.24	1.09 ± 0.07	7.40 ± 0.14	7.59 ± 0.04	1
RXC J0658.5-5556	104.63	-55.96	0.296	1527	11.19 ± 0.25	2.08 ± 0.02	23.22 ± 0.64	2.66 ± 0.14	13.73 ± 0.21	20.05 ± 0.10	
A665	127.75	65.88	0.182	1331	7.64 ± 0.46	1.12 ± 0.03	8.55 ± 0.61	1.09 ± 0.11	8.04 ± 0.37	6.81 ± 0.10	
A754	137.24	-9.65	0.054	1423	8.93 ± 0.24	1.04 ± 0.03	9.28 ± 0.39	0.86 ± 0.05	8.69 ± 0.63	4.68 ± 0.02	
A773	139.49	51.69	0.217	1228	6.78 ± 0.16	0.89 ± 0.01	6.01 ± 0.18	0.86 ± 0.11	6.55 ± 0.11	6.80 ± 0.04	
A781	140.09	30.49	0.298	1114	5.72 ± 0.10	0.76 ± 0.01	4.32 ± 0.10	0.72 ± 0.14	5.35 ± 0.07	4.75 ± 0.03	
A868	146.36	-8.64	0.153	1058	4.63 ± 0.16	0.51 ± 0.01	2.34 ± 0.08	0.41 ± 0.07	3.91 ± 0.10	3.18 ± 0.03	
A963	154.24	39.01	0.206	1123	5.49 ± 0.11	0.66 ± 0.01	3.63 ± 0.09	0.41 ± 0.09	4.95 ± 0.07	6.40 ± 0.03	1
RXCJ1131.9-1955	173.00	-19.92	0.308	1300	7.75 ± 0.31	1.30 ± 0.02	10.11 ± 0.53	1.30 ± 0.23	8.59 ± 0.26	11.01 ± 0.09	
A1413	178.81	23.39	0.143	1144	6.59 ± 0.07	0.53 ± 0.01	3.49 ± 0.05	0.69 ± 0.08	4.90 ± 0.04	3.39 ± 0.01	1
RXCJ1206.2-0848	181.59	-8.81	0.441	1334	10.15 ± 0.32	1.59 ± 0.02	16.13 ± 0.63	1.70 ± 0.30	10.83 ± 0.24	19.65 ± 0.12	1

•••

Comparison to X-rays: density profiles

REXCESS (Böhringer 2007)

A-ray selected representative sample of 31 clusters, z < 0.2

▶ M₅₀₀ from M-Y_X relation

(Arnaud et al. 2007, 2010)

The key result: Y₅₀₀ - Y_X relation

very low scatter relation

The Y₅₀₀ - M₅₀₀ and Y₅₀₀ - L_X relations

Conclusions

- 62 local clusters ESZ based
 - ▶ 55 with z < 0.3
 - ▶ a decade in mass: 2-20 × 10¹⁴ M_{sol}
- Selection effects investigated
 - minor corrections
- Well constrained scaling relations
 - ♦ Y₅₀₀-L_{X,500}: fully compatible with X-ray relation (note the lack of CC wrt to X-ray samples)
 - Y500-Y_X and Y500-M500 slope consistent with self-similar expectations normalisations compatible with other works (Arnaud et al. 2010, Andersson et al. 2010) small intrinsic scatter ~0.1

A superior robust and unique local reference

- ► Y_{SZ} versus M₅₀₀, M_{gas}, 500, L_X, 500, T_X
- for lower mass systems to probe cluster astrophysics
- for evolution studies
- ▶ the largest, highest-quality SZ-X-ray dataset currently-available

 Agreement between the present results, ground-based results and X-ray predictions augurs well for our understanding of cluster astrophysics.

Promising for the use of *Planck* clusters for precision cosmology

arXiv:1101.2026

Planck Early Results: Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations

Planck Collaboration: P. A. R. Ade⁶⁹, N. Aghanim⁴⁵, M. Arnaud⁵⁵, M. Ashdown^{53,75}, J. Aumont⁴⁵, C. Baccigalupi⁶⁷, A. Balbi²⁹, A. J. Banday^{74,6,60}, R. B. Barreiro⁵⁰, M. Bartelmann^{73,60}, J. G. Bartlett^{3,51}, E. Battaner⁷⁷, K. Benabed⁴⁶, A. Benoît⁴⁶, J.-P. Bernard^{74,6} M. Bersanelli^{27,40}, R. Bhatia³⁴, J. J. Bock^{51,7}, A. Bonaldi³⁶, J. R. Bond⁵, J. Borrill^{59,71}, F. R. Bouchet⁴⁶, H. Bourdin²⁹, M. L. Brown^{75,53}, M. Bucher³, C. Burigana³⁹, P. Cabella²⁹, J.-F. Cardoso^{56,3,46}, A. Catalano^{3,54}, L. Cayón²⁰, A. Challinor^{76,53,10}, A. Chamballu⁴³, L.-Y Chiang⁴⁷, C. Chiang¹⁹, G. Chon^{61,75}, P. R. Christensen^{64,30}, E. Churazov^{60,70}, D. L. Clements⁴³, S. Colafrancesco³⁷, S. Colombi⁴⁶, F. Couchot⁵⁸, A. Coulais⁵⁴, B. P. Crill^{51,65}, F. Cuttaia³⁹, A. Da Silva⁹, H. Dahle^{48,8}, L. Danese⁶⁷, P. de Bernardis²⁶, G. de Gasperis²⁹, A. de Rosa³⁹, G. de Zotti^{36,67}, J. Delabrouille³, J.-M. Delouis⁴⁶, F.-X. Désert⁴², J. M. Diego⁵⁰, K. Dolag⁶⁰, S. Donzelli^{40,48}, O. Doré^{51,7}, U. Dörl⁶⁰, M. Douspis⁴⁵, X. Dupac³³, G. Efstathiou⁷⁶, T. A. Enßlin⁶⁰, F. Finelli³⁹, I. Flores^{49,31}, O. Forni^{74,6}, M. Frailis³⁸, E. Franceschi³⁹, S. Fromenteau^{3,45}, S. Galeotta³⁸, K. Ganga^{3,44}, R. T. Génova-Santos^{49,31}, M. Giard^{74,6}, G. Giardino³⁴, Y. Giraud-Héraud³, J. González-Nuevo⁶⁷, K. M. Górski^{51,79}, S. Gratton^{53,76}, A. Gregorio²⁸, A. Gruppuso³⁹, D. Harrison^{76,53}, S. Henrot-Versillé⁵⁸, C. Hernández-Monteagudo⁶⁰, D. Herranz⁵⁰, S. R. Hildebrandt^{7,57,49}, E. Hivon⁴⁶, M. Hobson⁷⁵, W. A. Holmes⁵¹, W. Hovest⁶⁰, R. J. Hoyland⁴⁹, K. M. Huffenberger⁷⁸, A. H. Jaffe⁴³, W. C. Jones¹⁹, M. Juvela¹⁸, E. Keihänen¹⁸, R. Keskitalo^{51,18}, T. S. Kisner⁵⁹, R. Kneissl^{32,4}, L. Knox²², H. Kurki-Suonio^{18,35}, G. Lagache⁴⁵, J.-M. Lamarre⁵⁴, J. Lanoux^{74,6}, A. Lasenby^{75,53}, R. J. Laureijs³⁴, C. R. Lawrence⁵¹, S. Leach⁶⁷, R. Leonardi^{33,34,23}, A. Liddle¹⁷, P. B. Lilje^{48,8}, M. Linden-Vørnle¹², M. López-Caniego⁵⁰, P. M. Lubin²³, J. F. Macías-Pérez⁵⁷, C. J. MacTavish⁵³, B. Maffei⁵², D. Maino^{27,40}, N. Mandolesi³⁹, R. Mann⁶⁸, M. Maris³⁸, F. Marleau¹⁴, E. Martínez-González⁵⁰, S. Masi²⁶, S. Matarrese²⁵, F. Matthai⁶⁰, P. Mazzotta²⁹, A. Melchiorri²⁶, J.-B. Melin¹¹, L. Mendes³³, A. Mennella^{27,38}, S. Mitra⁵¹, M.-A. Miville-Deschênes^{45,5}, A. Moneti⁴⁶, L. Montier^{74,6}, G. Morgante³⁹, D. Mortlock⁴³, D. Munshi^{69,76}, A. Murphy⁶³, P. Naselsky^{64,30}, P. Natoli^{29,2,39}, C. B. Netterfield¹⁴, H. U. Nørgaard-Nielsen¹², F. Noviello⁴⁵, D. Novikov⁴³, I. Novikov⁶⁴, S. Osborne⁷², F. Pajot⁴⁵, F. Pasian³⁸, G. Patanchon³, O. Perdereau⁵⁸, L. Perotto⁵⁷, F. Perrotta⁶⁷, F. Piacentini²⁶, M. Piat³, E. Pierpaoli¹⁶, R. Piffaretti^{55,11}, S. Plaszczynski⁵⁸, E. Pointecouteau^{74,6}, G. Polenta^{2,37}, N. Ponthieu⁴⁵, T. Poutanen^{35,18,1}, G. W. Pratt^{55*}, G. Prézeau^{7,51}, S. Prunet⁴⁶, J.-L. Puget⁴⁵, J. P. Rachen⁶⁰, R. Rebolo^{49,31}, M. Reinecke⁶⁰, C. Renault⁵⁷, S. Ricciardi³⁹, T. Riller⁶⁰, I. Ristorcelli^{74,6}, G. Rocha^{51,7}, C. Rosset³, J. A. Rubiño-Martín^{49,31}, B. Rusholme⁴⁴, M. Sandri³⁹, D. Santos⁵⁷, G. Savini⁶⁶, B. M. Schaefer⁷³, D. Scott¹⁵, M. D. Seiffert^{51,7}, P. Shellard¹⁰, G. F. Smoot^{21,59,3}, J.-L. Starck^{55,11}, F. Stivoli⁴¹, V. Stolyarov⁷⁵, R. Sudiwala⁶⁹, R. Sunyaev^{60,70}, J.-F. Sygnet⁴⁶, J. A. Tauber³⁴. L. Terenzi³⁹, L. Toffolatti¹³, M. Tomasi^{27,40}, J.-P. Torre⁴⁵, M. Tristram⁵⁸, J. Tuovinen⁶², L. Valenziano³⁹, L. Vibert⁴⁵, P. Vielva⁵⁰, F. Villa³⁹, N. Vittorio²⁹, L. A. Wade⁵¹, B. D. Wandelt^{46,24}, S. D. M. White⁶⁰, M. White²¹, D. Yvon¹¹, A. Zacchei³⁸, and A. Zonca²³

(Affiliations can be found after the references)

Preprint online version: January 7, 2011

The Planck Collaboration SZ Early Papers

- Planck Early Results: The all-sky Early Sunyaev-Zeldovich cluster sample (arXiv:1101.2024)
- corresponding author: Marian Douspis (marian.douspis@ias.u-psud.fr)
- Planck early results: XMM-Newton follow-up for validation of Planck cluster candidates (arXiv:1101.2025)
- corresponding author: Etienne Pointecouteau (etienne.pointecouteau@cesr.fr)
- Planck early results: statistical analysis of SZ scaling relations for X-ray galaxy clusters (arXiv:1101.2043)
- ★ corresponding author: Rocco Piffaretti (rocco.piffaretti@cea.fr)
- Planck Early Results: Cluster SZ-Optical Scaling Relations (arXiv:1101.2027)
- ➤ corresponding author: James Bartlett (bartlett@apc.univ-paris7.fr)
- Planck Early Results: Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations (arXiv:1101.2026)
- corresponding author: Gabriel. W. Pratt (gabriel.pratt@cea.fr)