SPT SZ Observations

Christian Reichardt

UC Berkeley

J. Dana

Photo credit: J. Dana Hrubes

We Live in a Universe Dominated by Dark Energy

We live in a flat universe whose density is dominated dominated by dark energy $\Omega_{\Lambda} = 0.721 \pm 0.015$... but what is dark energy?

Dark Energy Constraints with Clusters of Galaxies

Matter Power Spectrum, P(k)Growth Rate of Structure, D(z)

Depends on: Rate of Expansion, *H*(*z*)

For fixed Ω_{DE} and less negative *w*: 1. Fewer clusters at low redshift, due to decreased volume surveyed 2. More clusters at high redshift, due to decreased growth rate

Requirements for an SZ cluster-finding machine

Resolution

- 1' is well-matched to typical cluster size at these redshifts
- At 150 GHz this means you need a 8-10 meter dish

Mapping Speed

- (# of elements) / noise²
- At 150 GHz (from the ground), bolometers have reached photon background limit to sensitivity
- Previous SZ/CMB instruments have on the order of tens of pixels (e.g. – ACBAR =16, QUAD = 31 pixels, ...)

Need more background-limited detectors!!!

The South Pole Telescope (SPT)

Funded by NSF

Sub-millimeter Wavelength Telescope:

- 10 meter telescope (1' FWHM beam at 150 GHz)
- Off-axis Gregorian optics design
- 20 microns RMS surface accuracy
- 1 arc-second pointing
- Fast scanning (up to 4 deg/sec in azimuth)

SZ receiver:

- 1 sq. deg FOV
- ~960 background limited pixels
- Observe in 3 bands between 95-220 GHz simultaneously with a modular focal plane

SPT Heroes Gallery

Dana Hrubes and

Daniel Luong-Van

2010 AND 2011!!

1

Zak Staniszewski 2007

Ross Williamson and Erik Shirokoff 2009

Steve Padin 2007

Column 1

315

The Survey

- Limited to Southern Celestial Hemisphere.
- Galactic dust emission drives to 20h < RA < 7h.
- Atmospheric emission drives to observing elevations > 30deg.
- Leaves us ~4000 contiguous square degrees.

The Survey

- So far have mapped ~1500 square degrees to survey depth.
- Full survey will be ~2500 square degrees - finishes in 2011. (concentrate on higher-latitude / more-negative-dec regions)

SPT map

Zoom in on 150 GHz map ~ 4 deg² of actual data

Zoom in on 150 GHz map ~ 4 deg² of actual data

~15-sigma SZ cluster detection

All these "large-scale" fluctuations are primary CMB.

Lots of bright emissive sources

Finding Clusters in the SPT Survey

Finding Clusters in the SPT Survey

Finding Clusters in the SPT Survey

SPT has found hundreds of new clusters!

Observing year	Area surveyed (square degrees)	Candidates above 4.5 sigma	Candidates above 4.5 sigma w/redshifts
2008	~200	~40	~30
2009	~600	~190	~150
2010 (full-depth & analyzed)	~600	~170	~80
TOTAL	~1400	~400	~260

Vanderlinde et al. 2010: 21 clusters from the first 200 deg²

Williamson et al., 2011: 26 most massive clusters from the complete 2500 deg² survey region

Scaling of actual counts predicts O(750) candidates for complete survey!

SPT cluster detections are robust

Simulations predict ~10 false positives above S/N=5 in entire survey (~100 above S/N=4.5).
Borne out by optical/IR/x-ray

optical/IR/x-ray follow-up of first catalog (only 1 spurious detection out of 22 in first ~200 sq. deg.)

SPT Cluster Properties

- SPT clusters are high redshift $(z \sim 0.6)$
- Mass threshold flat (or falling) with redshift

SPT clusters are all massive

All optically confirmed SPT clusters with x-ray measurements show strong signal and temperatures consistent with massive clusters $(\geq 2x10^{14} \text{ solar})$ masses).

The most significant clusters are even more massive:

 $(\geq 5 \times 10^{14} \text{ solar} \text{ masses}).$

Take-Home Message #1

SPT has already discovered hundreds of cluster candidates, the vast majority of which correspond to real, massive clusters.

Cosmology with SPT clusters I: Vanderlinde et al., 2010

Photo: Keith Vanderlinde

Mass Proxy?

Just use detection significance!

From Simulation

Parameter Constraints

C. Reichardt, SPT SZ Observations, Planck conference, January 11, 2011

Parameter Constraints

Need scaling relation calibration! X-ray? Weak Lensing?

Parameter Constraints

C. Reichardt, SPT SZ Observations, Planck conference, January 11, 2011

Cosmology with SPT clusters II: Testing ACDM Williamson et al., 2011

Photo: Keith Vanderlinde

Testing the model

Look for inconsistencies between growth-based measurements and distancebased measurements (or poor fit to LCDM).

•evidence for modified gravity, non-Gaussian initial conditions, ?

Mortonson et al. 2010 presented a formula for addressing whether a single massive cluster is in tension with LCDM.

The most significant SPT clusters are **not** in tension.

The highest redshift cluster rules out 32% of LCDM parameter space (at 95% CL).

Non-gaussian initial conditions

- We explore f_{nl} constraints from the most massive SPT clusters.
- Find no preference for non-Gaussianity.
 f_{n1} = 20 ± 450

Cosmology with SPT clusters III: Scaling relations

Photo: Keith Vanderlinde

Cosmology with SPT clusters III:

Distinguishing between cosmology and evolution in the SZ-mass scaling relation requires precise and unbiased mass calibration AT ALL REDSHIFTS.

•multi-wavelength mass calibration campaign, including:

•x-ray with Chandra and XMM (all redshifts)

•weak lensing at from Magellan (low/mid-z) and HST (high-z)

•dynamical masses from Gemini, VLT, hopefully HST

CHANDRA

http://obs.camegiescience.edu/Magellan/

Cosmology with SPT clusters III:

Distinguishing between cosmology and evolution in the SZ-mass scaling relation requires precise and unbiased mass calibration AT ALL REDSHIFTS.

•multi-wavelength mass calibration campaign, including:

•SOON: Deep optical, weak-lensing-quality data from DES

Example of the followup program

Decl.

SPT-CL J2106-5844 z=1.132; M₂₀₀=1.27e15 (Foley et al., 2011)

Decl.

316.58 316.56 316.50 316.48 316.46 316 44 316 54 316.52 R.A.

X-ray with SZ contours

Optical/IR with X-ray contours

Take-Home Message #2

In the near future, SPT will deliver a catalog of O(750) cluster candidates, with accurate, unbiased mass calibration at all redshifts, to constrain cosmological models.

Thanks!

Photo credit: Keith Vanderlinde