The millimeter and submillimeter sky in the Planck mission era Paris, 10-14 January 2011

Planck-LFI data and performance

On behalf of the Planck-LFI Team

Planck-LFI: the Team

Planck early results: first assessment of LFI in-flight performance

A. Mennella^{19,33}, M. Bersanelli^{19,35}, R. C. Butler³⁴, A. Curto⁴³, F. Cuttaia³⁴, R. J. Davis⁴⁶, J. Dick⁵³, M. Frailis³³, S. Galeotta³³, A. Gregorio²⁰, H. Kurki-Suonio^{13,28}, C. R. Lawrence⁴⁵, S. Leach⁵³, J. P. Leahy⁴⁶, S. Lowe⁴⁶, D. Maino^{19,35}, N. Mandolesi³⁴, M. Maris³³, E. Martínez-González⁴³, P. R. Meinhold¹⁶, G. Morgante³⁴, D. Pearson⁴⁵, F. Perrotta⁵³, G. Polenta^{2,32}, T. Poutanen^{28,13,1}, M. Sandri³⁴, M. D. Seiffert^{45,6}, A.-S. Suur-Uski^{13,28}, D. Tavagnacco³³, L. Terenzi³⁴, M. Tomasi^{19,35}, J. Valiviita⁴¹, F. Villa³⁴, R. Watson⁴⁶, A. Wilkinson⁴⁶, A. Zacchei³³, A. Zonca¹⁶, B. Aja¹⁰, E. Artal¹⁰, C. Baccigalupi⁵³, A. J. Bander^{40,49}, P. B. Berreiro⁴³, I. C. Bartlett^{4,45}, N. Bartelo¹⁷, P. Battaglia⁵⁷, K. Bennett²⁶, A. Bonaldi³¹, I. Bonavora^{53,5}, I. Borrill⁴

O Donz Franc Gruppu P. Ka Lähtee P. M. I Mic Paladi Pri Robber Sjomar

Planck Early Results: Low Frequency Instrument Data Processing

A. Zacchei³² *, D. Maino^{19,34}, C. Baccigalupi⁵⁰, M. Bersanelli^{19,34}, A. Bonaldi³⁰, L. Bonavera^{50,5}, C. Burigana³³, R. C. Butler³³, F. Cuttaia³³, G. de Zotti^{30,50}, J. Dick⁵⁰, M. Frailis³², S. Galeotta³², J. González-Nuevo⁵⁰, K. M. Górski^{44,54}, A. Gregorio²⁰, E. Keihänen¹², R. Keskitalo^{44,12}, J. Knoche⁴⁸, H. Kurki-Suonio^{12,27}, C. R. Lawrence⁴⁴, S. Leach⁵⁰, J. P. Leahy⁴⁵, M. López-Caniego⁴³, N. Mandolesi³³, M. Maris³², F. Matthai⁴⁸, P. R. Meinhold¹⁵, A. Mennella^{19,32}, G. Morgante³³, N. Morisset³⁶, P. Natoli^{21,2,33}, F. Pasian³², F. Perrotta⁵⁰, G. Polenta^{2,31}, T. Poutanen^{27,12,1}, M. Reinecke⁴⁸, S. Ricciardi³³, R. Rohlfs³⁶, M. Sandri³³, A.-S. Suur-Uski^{12,27}, J. A. Tauber²⁵, D. Tavagnacco³², L. Terenzi³³, M. Tomasi^{19,34}, J. Valiviita⁴¹, F. Villa³³, A. Zonca¹⁵, A. J. Banday^{40,48}, R. B. Barreiro⁴³, J. G. Bartlett^{4,44}, N. Bartolo¹⁷, L. Bedini⁶, K. Bennett²⁵, P. Binko³⁶, J. Borrill^{47,51}, F. R. Bouchet³⁹, M. Bremer²⁵, P. Cabella²¹, B. Cappellini³⁴, X. Chen³⁷, L. Colombo^{11,44}, M. Cruz⁴³, A. Curto⁴³, L. Danese⁵⁰, R. D. Davies⁴⁵, R. J. Davis⁴⁵, G. de Gasperis²¹, A. de Rosa³³, G. de Troia²¹, C. Dickinson⁴⁵, J. M. Diego⁴³, U. Doerl⁴⁸, S. Donzelli^{34,41}, G. Efstathiou⁵³, T. A. Enßlin⁴⁸, H. K. Eriksen⁴¹, M. C. Falvella³, F. Finelli³³, E. Franceschi³³, T. C. Gaier⁴⁴, F. Gasparo³², R. T. Génova-Santos^{42,23}, G. Giardino²⁵, F. Gómez⁴², A. Gruppuso³³, F. K. Hansen⁴¹, R. Hell⁴⁸, D. Herranz⁴³, W. Hovest⁴⁸, J. Jewell⁴⁴, M. Juvela¹², T. S. Kisner⁴⁷, L. Knox¹⁴, A. Lähteenmäki^{1,27}, J.-M. Lamarre⁴⁶, R. Leonardi^{24,25,15}, J. León-Tavares¹, P. B. Lilje^{41,8}, P. M. Lubin¹⁵, G. Maggio³², D. Marinucci²², E. Martínez-González⁴³, M. Massardi³⁰, S. Matarrese¹⁷, M. T. Meharga³⁶, A. Melchiorri¹⁸, M. Migliaccio²¹, S. Mitra⁴⁴, A. Moss¹⁰, H. U. Nørgaard-Nielsen⁹, L. Pagano⁴⁴, R. Paladini^{52,7}, D. Paoletti³³, B. Partridge²⁶, D. Pearson⁴⁴, V. Pettorino⁵⁰, D. Pietrobon⁴⁴, G. Prézeau^{7,44}, P. Procopio³³, J.-L. Puget³⁸, C. Quercellini²¹, J. P. Rachen⁴⁸, R. Rebolo^{42,23}, G. Robbers⁴⁸, G. Rocha^{44,7}, J. A. Rubiño-Martín^{42,23}, E. Salerno⁶, M. Savelainen^{12,27}, D. Scott¹⁰, M. D. Seiffert^{44,7}, J. I. Silk¹⁶, G. F. Smoot^{13,47,4}, J. Sternberg²⁵, F. Stivoli³⁵, R. Stompor⁴, G. Tofani²⁸, J. Tuovinen⁴⁹, M. Türler³⁶, G. Umana²⁹, P. Vielva⁴³, N. Vittorio²¹, C. Vuerli³², L. A. Wade⁴⁴, R. Watson⁴⁵, S. White⁴⁸, and A. Wilkinson⁴⁵

(Affiliations can be found after the references)

(main references for this presentation)

Planck-LFI: the Instrument

Sensitivity, stability & low systematics

- State-of-the-art InP LNA technology
- Cryo operation 20K Sorption Cooler
- 22-element array

70 GHz MMIC HEMT

Planck-LFI: the Instrument

Sensitivity, stability & low systematics

Stability ($f_K < 50 \text{ mHz}$) & Low systematics (~1 μ K)

- Pseudo-correlation radiometer design

"First light"

Data from 14 Jun 09 (2 months before start of survey, NO tuning)

In-flight tuning

(Jun-Jul 09)

(Cuttaia et al 2009, Gregorio et al 2011)

• Functionality tests ...

→ all 44 LFI detectors OK!

- Optimisation of bias for LNAs, Phase switches Exploit cool-down of HFI 4K stage (LFI loads)
- Tuning of electronics and compression parameters

Paris, 10-14 January 2011 M.Bersanelli – LFI data and performance

Preliminary Dipole Calibration

LFI cooldown

Planck-LFI: Data Processing

(Zacchei, Maino, et al. 2011)

- Beginning of Nominal Survey: 13/08/2009
- Till now, LFI acquired about 500 days of data

11 Jan 2011 release based on OD's 91-389

No significant problems detected, no missed OD's

Percentage of missed data

Science data acquired during re-pointing

- Currently not usable by pipeline
- In principle recoverable with full pointing information
- Gain change count 91 F Cosmic ray hits on DAE 10/08/2009 29/09/2009 18/11/2009 07/01/2010 26/02/2010 17/04/2010 06/06/2010 26/07/2010

Real gaps

The stability of the pipeline contributed to the creation of ERCSC (first public product from Planck) with high quality

• χ2 fit of beam model (bivariate Gaussian) (Burigana et al. 2001)

- Uncertainty on FWHM ~0.1'-1.3'
- Ellipticity ~1.3, as expected

Good match with model predictions...

Paris, 10-14 January 2011 M.Bersanelli – LFI data and performance

LFI24

LFI25

LFI26

LFI27

LFI28

22'.98

30'.46

30/31

32'65

32'66

AVE FWHM: 32'65

30 GHz

0.652'

1.075'

1.131'

AVE*e*: 1.38

1.266'

1.287'

(Sandri, Villa et al. 2010, 2011)

Compare data with predictiond from "Model Design":

- Ideal properties of: Reflectors surface, alignment, feeds beam pattern
- Smearing effect due to satellite rotation (~2% effect)

Excellent agreement down to -20 dB

- \rightarrow Optical performance of LFI optical system (telescope & feeds) is as expected
- \rightarrow No measurable deviations from elliptical fit down to -10dB

Reconstruction of focal plane geometry

• In-flight position of beams measured with *few arcsec* accuracy

Calibration

$$V \cong G(T_{\rm Sky} - rT_{\rm Ref}) + wn$$

Measure G = G(t) [V/K] For each of the 44 LFI detectors

- Main LFI calibrator: CMB Dipole
- For each pointing period (~45min): $\Delta V_k \cong G_k (\Delta T_{Sky} + wn) + b_k$

Main limitation: "contamination" from CMB anisotropy, foregrounds

- → Mask Galactic plane and bright sources (82% of the sky preserved)
- \rightarrow Iterative algorithm

Simulated iterative procedure LFI30GHz (worst case)

- Convergence reached typically after ~50 iterations
- Local deviations <0.6%

Zacchei, Maino et al. (2011) Cappellini et al. (2003)

Calibration Current model (1% accuracy)

Calibration Accuracy

Absolute calibration

per frequency map: ~1% (conservative)

Relative calibration

per radiometer: $\sim 0.3 - 0.4\%$ (typical) per frequency map:

30 GHz: ~0.05% 44 GHz: ~0.07% 70 GHz: ~0.12%

\rightarrow Optimise for polarisation analysis

Noise properties

• Noise spectra well described by 2-component (3-parameter) model (of all 22 LFI radiometers)

Noise properties: wn component

Calibrated WN from flight data, compared to ground tests

- Good agreement with ground tests

- In-flight tuning \rightarrow significant improvement for a few radiometers

- Noise ~25% above req (118 $\mu K~s^{1/2}),$ more than compensated by extended mission

- Good stability through 1st year survey (all parameters)

Noise properties: 1/f component

In-flight measured knee frequency, compared to ground tests

Knee frequency:

- Typically *f*_{knee} < 50 mHz *within requirements*
- Few exceptions (30GHz) effectively removed by destriping
- Accuracy ~15-20%

Slope:

- -Typically $\alpha \sim -1$ (-0.83 to -1.04)
- Accuracy ~10%, stable

Systematic effects

Planck design driver: minimise systematic errors

Objective: reduce systematic errors well below instrument white noise.

- Instruments & S/C design
- Orbit & scanning strategy
- Planck SEWG (J.-M. Lamarre & M.B. 2000)

LFI goal: Overall systematics $\sim 1 \mu K$

(LFI Scientific Requirements, 1999) (Mennella et al 2003) (M.B. et al 2010)

- Receiver differential scheme
- Reference loads cooled to 4K
- Gain modulation factor
- Diode averaging
- Stringent thermal stability requirements

LFI systematic error budget

Source	Random	Spin synch	Periodic
	Fraction of $\delta T_{1-\text{sec}}$	$\mu { m K}$	$\mu\mathrm{K}$
External Straylight	N/A	1	N/A
Internal Straylight	0.045	1	0.9
4K load	0.026	1	0.6
LFI thermal fluctua-	0.031	0.8	1.1
tions			
Front end $1/f$	0.217	N/A	N/A
Back end $1/f$	0.453	N/A	N/A
DC electronics	0.04	N/A	N/A
Quantisation	0.01	N/A	N/A
Total	0.507	1.9	1.5
Noise increase	0.121		

First in-flight assessment

(Mennella et al. 2011)

- Quantify all effects relevant at current stage of analysis:
 - 1-Hz frequency spikes
 - Thermal fluctuations: at 300K, 20K, and 4K (ref. loads)

Systematic effects "1-Hz frequency spikes"

- Identified and extensively tested in ground campaign \rightarrow Due to coupling with 1-second H/K electronics circuit
- Detailed simulations, removal algorithms already in place (Meinhold et al 2009)
- Signature is nearly identical in sky and ref signals

 \rightarrow Differencing greatly suppresses effect

- Effect modeled and projected through scanning strategy
 - \rightarrow 30 & 70 GHz: $\delta T_{\rm rms}$ < 0.4 μ K
 - → 44 GHz more sensitive (low Vout, high DAE gain Reduced to $\delta T_{rms} \sim 0.2 \ \mu K$ after removal

Systematic effects Thermal effects

(Terenzi et al. 2009, Morgante et al. 2009, Tomasi et al 2009)

Temperature changes are "slow" compared to spin rate: $f_{\text{Thermal}} \ll f_{\text{Spin}} \square 16 \text{ mHz}$

 \rightarrow Efficiently removed by destriping (Madam)

ightarrow Fast variations damped by thermal mass

Except for 4K loads, fluctuations are common mode

→ Differencing drastically reduces impact

How can we quantify the effect?

- Start with representative Temperature Sensor(s) data streams
- Apply thermal transfer functions (get physical temperature at sensitive component)
- Apply radiometric transfer function (get fluctuation in antenna temperature)
- Re-sample and build differenced time ordered data
- Build destriped maps (with Madam)

Thermal systematic effects Back-end fluctuations (300K)

Thermal systematic effects Front-end fluctuations (20K)

Thermal systematic effects Reference Loads fluctuations (4K)

NB: per sample (worst case)

- Impact in power spectrum is 1–3 orders of magnitude below WN level (of order $\sim 1\mu$ K)
- Only removal in pipeline (to date): 1-Hz spikes at 44GHz
- Dominant effects:

→ 30 and 44 GHz: 4K loads fluctuations

→ 70 GHz: back-end fluctuations (large scale); frequency spikes (small scales)

Planck-LFI – 30 GHz Channel Full sky maps of foreground emission after 1 year

Planck-LFI – 44 GHz Channel Full sky maps of foreground emission after 1 year

Planck-LFI – 70 GHz Channel Full sky maps of foreground emission after 1 year

Conclusions

In-flight measured performance in excellent agreement with pre-launch expectations

→ Beams (down to -20dB) and Focal plane geometry

- White noise sensitivity (for some channels improved after in-flight bias tuning)
- Parameters of **1**/*f* **noise** in line with ground measurements (typically <50 mHz)
- → Photometric Calibration (absolute <1%, relative ~0.1%)
- \rightarrow Overall **Systematic effects** at ~1µK level
 - So far, excellent **Stability** of all performance parameters

(Can be improved)

Parameter	30 GHz	44 GHz	$70\mathrm{GHz}$
Centre frequency [GHz]	28.5	44.1	70.3
FWHM [']	32.65	27.92	13.01
Ellipticity	1.38	1.28	1.26
White noise sensitivity $\left[\mu K_{CMB} s^{1/2}\right] \dots \dots$	146.8	173.1	152.6
$f_{\rm knee} [{\rm mHz}] \ldots \ldots \ldots$	113.7	56.2	29.5
1/f slope	-0.87	-0.89	-1.03
Absolute calibration uncertainty [%]	1	1	1
Relative calibration uncertainty [%]	0.05	0.07	0.12
Systematic effects uncertainty ^a $[\mu K_{CMB}]$	1.10	0.98	0.45
$\Delta T / T$ per pixel at EOM (end-2011) including 1/f and systematic effects $\Delta T / T$ Blue Book goal	2.4×10^{-6} 2.0×10^{-6}	3.2×10^{-6} 2.7×10^{-6}	$5.9 imes 10^{-6}$ $4.7 imes 10^{-6}$

(10% better than requirement)

Paris, 10-14 January 2011 M.Bersanelli – LFI data and performance

Conclusions

- Planck-LFI most powerful instrument to date at these frequencies and contributes to make Planck a unique mission
- Next challenges:

(i) Fight systematics(ii) Polarisation performance

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency --ESA -- with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Full LFI array – 2-diodes combination per radiometer

M.Bersanelli – LFI data and performance

Planck-LFI noise power spectra

q١

ogenzia spazi italiana

