Amplitudes of solar p modes: a refined modeling of the eddy time-correlation function

Kévin Belkacem (1,2), Réza Samadi (2), Marie-Jo Goupil (2) (1) Université de Liège, Belgique (2) LESIA, Observatoire de Paris-Meudon, France

1

Solar modes: energy supply rate

Forced oscillators (Goldreich & Keely (77)'s approach)

We solve an *inhomogeneous* wave equation :

• Stochastic process : \Rightarrow observational constraints provides the mean square: $\langle A^2 \rangle$

• The source function (S) can be modeled statistically

$$\langle A^2 \rangle \propto \int dm \int d^3r d\tau \vec{\xi} \cdot \langle \vec{S}\vec{S} \rangle \cdot \vec{\xi} e^{i\omega_0\tau}$$

τ : Time correlation length two-point correlation
r : space correlation length

two-point correlation products (space and time)

Theoretical expression

For radial modes and Reynolds stress only (Samadi & Goupil 2001):

$$P(\omega) \propto \eta \langle A^2 \rangle \propto \int dr 4\pi r^2 \left(\frac{d\xi_r}{dr} \right)^2 S_R(\omega_{0,r})$$

 ${old S}_{R}(\omega_{0,}r)$ the source function

GONG 2010 - SoHO 24 - June 2010

Theoretical expression

The source function :
$$S_R(\omega_0, r) = \int dk d\omega \frac{E^2(k)}{k^2} \chi_k(\omega_0 + \omega) \chi_k(\omega)$$

• kinetic energy spectrum : $m{E}(m{k})$

• mode compressibility : $d\xi_r/dr$

• <u>frequency spectrum</u> : $\chi_k(\omega)$

controls the excitation strength

Scontrols the excitation efficiency

 $\chi_k(\omega)$ is the Fourier transform of the Eulerian velocity time-correlation: $\langle u_k(t+\tau)u_k(t)\rangle$

Goldreich & Keelly (1977), Bamlforth (1992), GMK (1994), Houdek (1999), Chaplin et al (2005) \Rightarrow Gaussian $\chi_k(\omega)$

Gaussian $\chi_k(\omega)$?

- > $\chi_k(\omega)$ computed with Stein & Nordlund (1998)'s code.
- > Gaussian function underestimates $\chi_k(\omega)$ above ~1.5 mHz
- Lorentzian frequency spectrum at large scale : predicted by Gough (1977)'s time-dependent Mixing-Length theory

Comparison with the observations

— blue x 20

Kolmogorov spectrum, no entropy contribution

Extend of the driving region

Cumulated mode excitation rates (from the surface down to the bottom of the CZ)

➔ A substantial part of the driving comes from the inner part of the CZ

→ There is something wrong with the Lorentzian $\chi_k(\omega)$

Lorentzian $\chi_k(\omega) \Leftrightarrow$ exponential time-correlation $\chi_k(\tau)$

Langevin stochastic model: results in an exponential time-correlation
But derivative not continuous at τ = 0 (the time-correlation is symmetric w.r.t τ=0)
GONG 2010 - SoHO 24 - June 2010
Kévin Belkacem / Réza Samadi

The Eulerian time-scale

time-correlation

Two time-scales

Integral time scale (τ_{ν}) :

➔ time-scale of turbulent loss of coherence, or memory time-scale of turbulence

<u>Eulerian time micro-scale</u> (τ_{F}) :

→ Controls the curvature of $\chi_k(\tau)$ at $\tau = 0$

Time-equivalent of the Taylor micro-scale (largest scale at which viscosity affects the dynamics)

The sweeping hypothesis

<u>Sweeping</u>: to clean a floor by using a brush to collect the dirt into one place from which it can be removed

> At the scale k, an observer will see the sub-inertial eddies advected by energy bearing eddies of velocity U_0

- Equivalent of the Taylor's hypothesis (frozen turbulence approximation)
- > Equivalent to a Doppler shift

Short-time analysis

Short-time analysis (see e.g. Kaneda 1993) : $X_k(\tau) = X_k(\tau=0) \left(1 - \frac{|\tau|}{\tau_k} + \frac{1}{2} \left(\frac{\tau}{\tau_E}\right)^2\right)$ first order term first order term < second order term The sweeping assumption gives: $\tau_E = (k \ U_0)^{-1}$ 1975, Kaneda 1993, Kaneda et al 1999. Rubinstein & Zhou 2002) We always have: $\tau_{F} < \tau_{L}$

• For $\tau > \tau_{E}$ (low frequency): the first order term dominates $\Rightarrow \chi_{k}(\tau)$ is a **Exponential** \Rightarrow **Lorenztian** $\chi_{k}(\omega)$ • For $\tau < \tau_{E}$ (high frequency): the second order term dominates $\Rightarrow \chi_{k}(\tau)$ is a **Gaussian** \Rightarrow **Gaussian** $\chi_{k}(\omega)$

Frequency spectrum

Application to the solar p modes

GONG 2010 - SoHO 24 - June 2010 Kévin Belkacem / Réza Samadi 5

Conclusion

- > **Resolve the conflict** between Gaussian $\chi_k(\omega)$ and Lorentzian $\chi_k(\omega)$
- Seismic validation of the sweeping hypothesis in a stellar context
- Still important discrepancies at high frequency between the observations and theoretical calculations based on 3D data

To go further

- Determination of the Eulerian time micro-scale in the injection region
- Inclusion of a realistic non adiabatic treatment of the eigenfunctions
- More realistic modelling of the entropy source term (avoiding the passive scalar assumption)

Sweeping approximation

At small scales, the eddy dynamic is governed by the advection by the largest scales (see Kraichnan 1964):

$$\frac{\partial}{\partial t}\vec{u}(k,t) + \vec{U}_0 \cdot \nabla \vec{u}(k,t) = \vec{0}$$

General solution:

$$\vec{u}(k,t) = e^{i \vec{k} \cdot \vec{U}_0 t} \vec{u}(k,0)$$

Normalised eddy time-correlation:

$$R(\tau) = \frac{\langle u(k,t+\tau)u(k,t)\rangle}{\langle u(k,t)^2\rangle} = \langle e^{i \vec{k} \cdot \vec{U}_0 \tau} \rangle = \exp\left[-\frac{1}{2} U_0^2 k^2 \tau^2\right]$$

We then derive the Eulerian time-scale:

$$R(\tau) = \exp\left[-\frac{1}{2} \quad U_0^2 \quad k^2 \quad \tau^2\right] = \exp\left[-\frac{1}{2} \quad \left(\frac{\tau}{\tau_E}\right)^2\right] \quad \Rightarrow \quad \tau_E = (k \quad U_0)^{-1}$$

GONG 2010 - SoHO 24 - June 2010

Kévin Belkacem / Réza Samadi

GONG 2010 - SoHO 24 - June 2010

Kévin Belkacem / Réza Samadi

18

Amplitude of Solar-like oscillations across the HR diagram (2/4)

> Observations => slope s ~ 0.7 - 0.8

- Kjeldsen & Bedding (1995) : s = 1.0
- Houdek et al (1999) : s = 1.5

> With s=1.5 oscillation amplitudes are severely over-estimated for hot stars

GONG 2010 - SoHO 24 - June 2010

<u>Application to the solar p modes</u> How far are we from the observations ?

Relevant location

More recent results (4/5)

Relevant quantities (continue) ω_0 0.6 $E(k) \propto k^{-5/3}$ $\chi_k(\omega) \propto \tau_k e^{-(\tau_k \omega)^2}$ 0.5 -1.0 -0.4 3 × 0.3 E(K) -5/3 $\omega_k \propto 1/\tau_k$ 0.2 0.1 0.1 $k \propto 1/\lambda_k$ 0.0 0 2 10 ω k / ka

At fixed mode frequency (ω_0) : efficient excitation for $\omega_0 < \omega_k \Rightarrow \tau_k \omega_0 < 1$

Eddy turn-over time : $au_k \! \propto \! \lambda_k / u_k$

$$E(k) \propto k^{-5/3} \Rightarrow \tau_k \approx \tau_\Lambda \left(\lambda_k / \Lambda\right)^{2/3}$$

$$\tau_k \omega_0 < 1 \implies \lambda_k < \Lambda (P_{osc} / \tau_\Lambda)$$

GONG 2010 - SoHO 24 - June 2010