#### 3D helioseismic inversions of ringanalysis flow measurements

Nick Featherstone<sup>1</sup> Brad Hindman<sup>1</sup> Mike Thompson<sup>2</sup>

<sup>1</sup>JILA, University of Colorado at Boulder <sup>2</sup>University of Sheffield (or perhaps HAO/NCAR)

## Goals of this Talk

 Announce that our long promised 3D inversion procedure is now fully functional and ready for implementation in the HMI pipeline.

• Show you all how it works.

 Show some preliminary inversions around sunspots. (Strong Outflows to deep layers!)

### Local Helioseismology

Two Basic Techniques to Measure Flows

Time-Distance Helioseismology



• Ring Analysis



#### **Plane Wave Decomposition**



$$v(k_{x},k_{y},\omega) = (2\pi)^{-3/2} \iiint e^{-i\vec{k}_{\mathrm{h}}\cdot\vec{x}} e^{i\omega t} v_{\mathrm{los}}(x,y,t)$$

#### **Power Spectra**

Power 
$$= \left| v(k_x, k_y, \omega) \right|^2$$

Since there are two spatial dimensions (x, y), and the time dimension t, the spectra are 3D.





#### The Effects on *p*-Mode Spectra





# Tracked at the rotation rate

The above spectra was obtained by following the same patch of fluid as it rotates across the solar disk. This removes the large rotational velocity.

#### No Tracking

The above spectra was obtained by studying the same area on the solar disk. Equatorial rotation results in a speed of ~ 2000 m/s.

# **Building Mosaics**



#### Three Tile Sizes

- 2°×2° (22 Mm in diameter)
- 4°×4° (45 Mm in diameter)
- 16°×16° (183 Mm in diameter)



### Standard Ring-Analysis Data

#### For every tile the procedure obtains

Mode frequencies  $\omega\left(n,l
ight)$ 

Zonal Doppler Shifts

Meridional Doppler Shifts

 $u_y(n,l)$ 

 $u_r(n,l)$ 

#### **3-D Inversion Implementation**

#### RLS (Regularized Least Squares)





6/28/2010

#### Sensitivity Kernels

The sensitivity kernels are computed using a code written by Aaron Birch which utilizes the Born approximation to describe the wave propagation.

The structure of the kernels depends on the manner in which the ring-fitting is performed.

We preferentially get higher sensitivity in a ring with a size that is roughly the apodization radius.

$$n = 2$$

$$l = 428$$







-50

0

50

100

Radial Velocity (m s<sup>-1</sup>)

150

**Outflow Speed** 

GONG 2010 Aix-en-Provence

200

250

are computed about this point

### **Averaging Kernels**



Target Depth 1 Mm

**Target Depth 5 Mm** GONG 2010 Aix-en-Provence

# Synoptic Flow Map

#### 11 — 20 January 2002

7 Mm



GONG 2010 Aix-en-Provence

#### **Time-Distance Results**



#### Moat Flows Obtained with f Modes

Time-Distance Helioseismology

#### **Ring Analysis**



Jackiewicz et al. 200?

Haber 2009 4 January 2002

Advantages over the "Old" 1-D procedure

- Self-consistent treatment of horizontally varying flows
- Higher horizontal spatial resolution at all depths (but particularly at intermediate depths, 2 - 7 Mm).
- Can now connect surface structures with related deep structures (smoothly varying resolution with depth).

## Conclusions

- The 3-D ring-analysis inversions are working well.
- They have been optimized for computational efficiency, and are ready for importation into the HMI pipeline.
- We detect 200 m/s outflows from sunspots all the way from the surface down to a depth of roughly 7 Mm.
- We agree with the f-mode time-distance measurements at the surface and the p-mode time-distance inversions at depth.