A SEARCH FOR COHERENT STRUCTURES IN SUBSURFACE FLOWS

R. KOMM, R. HOWE, F. HILL NATIONAL SOLAR OBSERVATORY TUCSON, AZ

INTRODUCTION

(Miesch et al., 2008)

Global models of solar convection show north-south aligned cells at the equator (remember: giant cells?)

INTRODUCTION

360° longitude, 0°-25° latitude, 2 day intervals

North-south downflow lanes are apparent in the radial velocity (left) and the zonal velocity derivative (right).

RING-DIAGRAM ANALYSIS

16° patch, circular apodized to 15°; 1664 min (1 ring day); 0 - 16 Mm depth. Comparable to the size of convection cells much larger than that of downflow lanes.

DAILY FLOW MAP

Daily flow maps show large-scale flows in the zonal and meridional direction. Errors increase toward the solar limb.

WHAT TO DO?

- Take daily flow maps
- ^{segment} Select equatorial strip and average flows in latitude ($|\Theta| < 30^\circ$) for each CMD ($|\Phi| ≤ 45^\circ$)
- Search for a persistent pattern from day to day in the average flow
- Choose epoch of minimum activity (to avoid active regions)

ZONAL VELOCITY DERIVATIVE

What is this pattern near day 15 of CR 2071?

ZONAL VELOCITY DERIVATIVE

Magnetic and flow patterns move across the disk.

MAGNETIC-FIELD PATTERN

Correlations show patterns exist even during minimum. The correlation is weaker during minimum. Excluding largest 25% reduces the correlation at minimum.

FLOW-PARAMETER PATTERN

TIU

Errors correlate well with magnetic activity. Their correlation is reduced after excluding largest 25%. Pattern persists for days in zonal flow derivative.

FLOW-PARAMETER PATTERN

zonal velocity derivative ∂v_x / ∂x

25% with largest B excluded

> The correlation is weaker at greater depth (at $\pm 15^{\circ}$). The correlation is larger than for a random set (dotted). The correlation is less pronounced for v_z (at $\pm 30^{\circ}$).

- Subsurface flows are sensitive to the presence of magnetic activity (even during minimum).
- We find structures that persist for several days in the zonal flow derivative and the vertical velocity.
- Consistent with other observations: North-south aligned pattern in supergranulation (Lisle, Rast, Toomre, 2004, Nagashima et al. 2010)

WHAT IS IT?

CZ models and pattern in supergranulation: convective structures

Some flow variations look too strong for such weak fields: submerged magnetic fields?

Artifacts?