The Rotation Rate and its Evolution Derived from Improved Mode Fitting and Inversion Methodology

S.G. Korzennik⁽¹⁾, A. Eff-Darwich⁽²⁾

(1) Harvard-Smithsonian Center for Astrophysics Cambridge, MA, USA

(2) Instituto de Astrofísica de CanariasLa Laguna, Tenerife, Spain

July 2010

SOHO 24/GONG 2010

The Data: Some 13 Years of It

- GONG pipe-line (Anderson et al, 1990) ★ 147 GONG months (36 days), ★ fitted in *overlapping* 108-day long segments, individually & independently fitted, * no leakage matrix information, symmetric profile. MDI pipe-line (Schou, 1992) ★ 67 MDI non-overlapping epochs (72 days), \star polynomial expansion in m, incl. leakage matrix information, symmetric profile. MDI Larson/Schou improvements * spatial decomposition: plate scale and image distortion
 - ★ leakage matrix: distortion by differential rotation
 - ★ symmetric and asymmetric profile (62 & 57 epochs)

Rotation Rate & Evolution

1995.06.29 -- 2009.09.07

1996.05.01 -- 2009.12.07

SOHO 24/GONG 2010 🗔 🗔

YAOPBM

- SGK fit (Korzennik 2005, 2008)
 - ✤ Method
 - * simultaneous fit of indiv. modes w/ sanity rejection,
 - * incl. leakage matrix,
 - * asymmetric profile,
 - * optimal multi-tapered spectral estimator,
 - * use time-series of varying lengths.
 - *pipe-line* SHC time-series
 - * 2088-day long time-series
 - * 728-, 364-, 182-day long, overlapping, time-series
 - *improved* SHC time-series
 - * incl. distortion by diff. rotation
 - * 64×72 , 32×72 , 16×72 -day long, overlapping, time-series

Yet An Other Peak Bagging Method

1996.05.01 -- 2002.01.17

1996.05.01 -- 2009.07.16

The Problems: Foreword

Inverse Theory

$$y_i = \int K_i x(p) \, dp$$

- ★ Inverse problems are singular,
- require regularization to lift singularity (smoothness),
- \star produce an *estimate* of the solution $\hat{x} = x \otimes R$
- \bigstar R resolution kernels depend on the input set

Solar Rotation

$$\delta\nu_{n,\ell,m} = \iint K_{n,\ell,m}(r,\theta) \,\Omega(r,\theta) \,dr \,d\theta$$

- \star input set is defined by $\{n, \ell, m\}$ or $\{n, \ell, a_i\}$
- \bigstar temporal changes in the input set affect R, hence \hat{x}

 \Rightarrow chose to invert a constant input set

GONG & MDI

- Frequencies or polynomial expansion?
 - ★ GONG *pipe-line*
 - * Would like to use ν , not a_i
 - * a_i computed from $\nu_{n,\ell,m}$
 - ★ MDI pipe-line
 - * Produces only a_i , independent of mode visibility
- Mode attrition when reducing to a unique input set
- Fill factor not constant with time
- Error bars estimate

Attrition – GONG Tables

Attrition – MDI Tables

SGK Fitting (YAOPBM/MDI) – Attrition

50H024/GONG2010

• Leakage matrix

- ★ closest leaks $\Delta \nu_{\delta m=2,\delta \ell=0}$ are *rarely* resolved * $\Delta \nu \gg \Gamma$, $\Delta \nu \simeq 2 \times \frac{\Omega}{2\pi} \simeq 0.8 \,\mu\text{Hz}$
- \star plate scale, distortions, B_0
 - * new MDI Sph. Harm. Coefs
 - accounts for plate scale and image distortion
 - * distortion by differential rotation (Woodard 1989)

$$* B_0 = B_0(t)$$

1 - 6% effect 3 - 15% effect

- * other geometric variations negligible
- \Rightarrow very long time-series indicate remaining mismatch for f-mode
- Independent leakage computation

Leakage Matrix – Distortion by Differential Rotation

Leakage Matrix – Bo effect

f, p₁, p₂, & p₃ modes, $\ell = 20, (5), 200$, 64×72d

The Inversion Methodology

Modified RLS (Eff-Darwich & Korzennik, 2007)

- ★ Iterative approach
- *optimal* model grid, based on input set
- ★ non-uniform model grid

• $\Omega(r,\theta)$, 64×72 d, change with trade-off

Mean Rotation Rate & Precision – MDI 64×72 days (12.6 yr)

MDI/SGK 64×72 d $\Omega(r, x)$, set#10

MDI/SGK 64×72 d $\sigma_{\Omega}(r, x)$, set#10

 $\Omega(r,\theta)$, 6×16×72d, change with time

• $\Omega(r,\theta)$, $6 \times 16 \times 72$ d, change with time

Rotation Rate & Evolution

Rotation Rate Changes -r/R = 1.00

1996 1998 2000 2002 2004 2006 2008 2010

1996 1998 2000 2002 2004 2006 2008 2010

1996 1998 2000 2002 2004 2006 2008 2010

$\Omega(r,\theta)$, GONG – change with time at various depths

$\Omega(r,\theta)$, MDI – change with time at various depths

Rotation Rate Changes -r/R = 1.00 (selection)

Rotation Rate Changes -r/R = 0.87 (selection)

10

period [yr]

10

1

period [yr]

GONG PipeLine/9 CGs/108d

10

period [yr]

10

1

period [yr]

high]

δΩ [nHz]

Rotation Rate Changes -r/R = 0.71 (selection)

MDI/SGK/182d

50

power spectrum of $<\delta\Omega>$

averaged over ϕ

2000 2004 2008

20

10

-10

1996

δΩ [nHz]

1996 2000 2004 2008

-10

-20

Conclusions

• Fitting remains an *issue*

- ***** attrition
- f-mode leakage mismatch:
 - * high ℓ (MTF) or horizontal component ($\beta = 1$)
- ★ plan to complete MDI analysis on shorter epochs
- ★ expect to apply it on GONG and HMI

Mean rotation

- Iong time-series
- + dip at $(0.4, 63^{\circ}) 1\sigma$, rising branch of cycle

Evolution

- ★ *easy* at the surface
- ★ remains challenging down to base of CZ
- ★ difficult below CZ

That's all folks!

ADV – See Also Posters:

- CDF-4 Antia & Basu
- CDF–7 Howe & al
- CDF–10 Eff-Darwich & Korzennik M–9
- CDF–6 Howe & al
- CDF–9 Komm & al
 - Eff-Darwich & Korzennik

Leakage Matrix – Resolution

f-mode – 64 × 72d & 2 × 72d – $\ell = 120, (2), 300$

f-mode – $64 \times 72d - \ell = 120, (2), 300$

The Data

Attrition – Summary

Fill factors, GONG & MDI

Rotation Rate & Evolution

 $\Omega(r,\theta)$, 64×72 d, change with trade-off

Dip at $r/R = 0.4, \theta = 63^{\circ} - MDI 64 \times 72d$

Dip at $r/R = 0.4, \theta = 63^{\circ} - MDI 16 \times 72d$

latitude

latitude

latitude

latitude

latitude

Rotation Rate Changes -r/R = 0.87

1996 1998 2000 2002 2004 2006 2008 2010

MDI/JS/72d at r/R=0.87 set#10

1996 1998 2000 2002 2004 2006 2008 2010

Rotation Rate Changes -r/R = 0.71

MDI/JS/72d at r/R=0.71 set#10

50

-50

50

-50

⊕ 0.

The End

back to thumbnails