

What do global *p*-modes tell us about large scale solar flows?

Piyali Chatterjee (NORDITA, Stockholm & TIFR, Mumbai) and H. M. Antia (TIFR, Mumbai)

What this work is about

• (Re)calculation of effects of Zonal (rotation) and poloidal solar flows (meridional circulation, giant cells) on *p*-mode splitting coefficients. *Leads to much lower estimates for frequency shifts!*

Previous related work:

<u>Roth, Howe and Komm, 2002, A&A, 396, 243</u> <u>Roth and Stix (1999, 2003, 2008)</u>

• Compare theoretical splitting coefficients with GONG as well as MDI data sets and *put upper limits on the magnitudes of these flows*.

The technique

- Quasi-degenerate Perturbation Theory (Lavely & Ritzwoller, 1992)
- Couples two modes with slighly different un-perturbed frequencies (for us $|\omega_2 \omega_1| < 100 \ \mu Hz$)

$$\begin{bmatrix} H_{11} - \Delta & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \rightarrow \lambda = H_{22} - \frac{|H_{12}|^2}{H_{11} - H_{22} - \Delta}$$

The technique

- Quasi-degenerate Perturbation Theory (Lavely & Ritzwoller, 1992)
- Couples two modes with slighly different un-perturbed frequencies (for us $|\omega_2 \omega_1| < 100 \ \mu Hz$)

$$\begin{array}{c} \Delta = \omega_{2}^{2} - \omega_{1}^{2} \\ H_{11} - \Delta H_{12} \\ H_{21} & H_{22} \end{array} \xrightarrow{\left| H_{22} - \omega_{1}^{2} \right|} 0 \\ \downarrow \lambda = H_{22} - H_{11} - H_{22} - \Delta \end{array}$$

In contrast *degenerate perturbation theory* (DPT) couples only exactly degenerate un pertubed modes

The Model

A Deemed University

- Standard solar model with OPAL equation of state, OPAL opacities, convective flux calculation (Canuto & Mazzitelli, 1991)
- Eigenfunctions and frequencies from a *Solar pulsation code* (with non-adiabatic effects and without Cowling's approx, H. M. Antia, 2002, ver 2.2)

QDPT: Application to rotation

 $\omega_{nlm} = \omega_{nl} + \sum a_q^{(nl)} P_q^l(m)$ $\Omega r \sin \theta = -w_1^0 \partial_{\theta} Y_1^0 - w_3^0 \partial_{\theta} Y_3^0$ Zonal flows affects p-modes in two ways: Coriolis force, linear in $\Omega(\text{odd splitting})$ 1. coefficients a_{2q+1} from DPT) N-S asymmetric Ω gives even splitting coefficients a_{2a} : with $w_{2}^{0} = -7.8 \pm 0.3 \text{ ms}^{-1}$ (Hathaway et al 1996), we calculate $a_2 \sim 0.1 \text{ nHz}$ 2. Centrifugal force, Ω^2 (DPT gives even

splitting coeff, a_{2q} Antia et al. 2000: $a_2 < 25 \text{ nHz/l}$)

QDPT: Application to rotation

QDPT can calculate effect of Ω (Coriolis force) on $a_{2q}as a$ second order correction m^4

-0.4└_ 0.2

20

-20

-40∟ 0.2

(b)

a₂ (nHz)

04

0.4

0.6

0.6

 r_{f} / R_{s}

0.8

0.8

For w_1^0 term $H_{12} = 0!$ For $w_3^0 = 34.9 \text{ ms}^{-1} \text{ r} > 0.7$, $la_1 \sim 0.4 \text{ nHz}; la_2 < 35 \text{ nHz}$

QDPT: Non Zonal flows $(u_0 = 9 \text{ ms}^{-1}, s = 2, t=0, Y_2^{-0})$

• Meridional circulation $v(r, \theta, \varphi) = u \frac{t}{s}(r) Y_s^t + v \frac{t}{s}(r) \partial_{\theta} Y_s^t$

QDPT: Non Zonal flows $(u_0 = 9 \text{ ms}^{-1}, s = 2, t=0, Y_2^{-0})$

• Meridional circulation

$$\mathbf{v}(\mathbf{r}, \theta, \varphi) = \mathbf{u}_{s}^{t}(\mathbf{r}) \mathbf{Y}_{s}^{t} + \mathbf{v}_{s}^{t}(\mathbf{r}) \partial_{\theta} \mathbf{Y}_{s}^{t}$$

$$\omega_{nlm} = \left[\omega_{nl}^{2} + H_{22} + \frac{|H_{12}|^{2}}{H_{11} - H_{22}} - \Delta \right]^{1/2}$$

QDPT in necessary to provide the first correction due to poloidal flows

$$\delta \omega_{nlm} \approx \frac{H_{12}^2}{2\omega_{nl}\Delta}$$

Where, Δ = difference in squared frequency of the coupling modes

QDPT: Meridional flow $(u_0 = 9 \text{ ms}^{-1}, s = 2, t=0, Y_2^{-0})$

 la_1 and la_2 as a function of turning point radius r_t Max $\delta \omega \sim -12.5 \text{ nHz}!$ Max $la2 \sim 8.5 \text{ nHz}!$ Chatterjee, P. & Antia, H. M.

For (n, l) = (1, 292)

QDPT: Meridional flow $(u_0 = 100 \text{ ms}^{-1}, s = 8, t=0, Y_8^{-0})$

Increasing *s* allows more multiplets with $|\omega_1 - \omega_2| < 100 \ \mu Hz$ to couple.

More instances of "near degeneracy" such that $\delta v \propto \Delta^{-1}$ can become very large

where, Δ = difference in squared frequency of the coupling modes Example: (n, l) = (17, 56) and (16, 64) have $\Delta/2\nu = -0.06\mu$ Hz $la_2 = 480$ nHz

QDPT: Giant Cells $(u_0 = 100 \text{ ms}^{-1}, s = 8, t=4, 8, Y_8^{-8} Y_8^{-4})$

- **QDPT: Giant Cells** $(u_0 = 100 \text{ ms}^{-1}, s = 8, t=4, 8, Y_8^{-8}, Y_8^{-4})$
- Expression for $u(r, \theta, \varphi)$ involves $Y_{\delta}^{4}(\theta, \varphi)$ or $Y_{\delta}^{\delta}(\theta, \varphi)$ (banana cells) \Rightarrow coupling between different *m*, *m*' of *p*-modes.
- Important to take effect of rotational splitting on Δ , before calculating the effect of flows with $t \neq 0$.
- Basically $\Delta \equiv \Delta(m)$ unlike for t = 0 cases.
- Rotational splittings obtained from temporally averaged GONG data.
- Giant cells cause splittings asymmetric about m = 0;
 odd a_{2q+1}affected. To what extent is rotational inversion affected?

QDPT: Giant Cells $(u_0 = 100 \text{ ms}^{-1}, s = 8, t=8, \text{Banana cells})$

QDPT: Giant Cells

 $Y_8^4(\theta,\phi)$

Y₈⁸(θ,φ) (Banana cells)

QDPT: 1.5d inversion

To what extent is rotational inversion distorted? Ans: No appreciable distortion For Y_8^8 flow, 1.5d helioseismic inversion using errors in GONG data and theoretical calculated a_1, a_3

 $\Omega r \sin \theta = -w_1^0 \partial_\theta Y_1^0 - w_3^0 \partial_\theta Y_3^0$

Observational splitting coefficients

- It is only the "nearly degenerate" modes we may hope to detect in observations.
- Use 7 different GONG data sets covering late descending part of cycle 22 end of cycle 23
- Most contribution to a_2 comes from surface effects. But we are interested in modes with $r_t \sim 0.7$
- Multiplets sorted in order of increasing r_t and smoothed using a 100 point error weighted average.

GONG 2010- SoHO 24, Aix-en-Provence

Observational splitting coefficients

19-Nov-2002

- Only way to put an upper
 limit on flow is to look
 for nearly degenerate
 modes in the data .
- **Problem:** running mean combines results with positive and negative a_q
- Separate into two groups on basis of theoretical results: $la_2 < -10 nHz$ & **18-Sep-2007** $la_2 > 10 nHz$.

Observational splitting coefficients

- Consider modes with la_2 <-10 nHz and search for them in each GONG data set.
- Average la_2 from theory over available multiplets and error σ_2 in a_2 from observations.
- For Y_8^4 flow with $u_0 = 100 \text{ ms}^{-1}$, $|la_2| \sim 22 \text{ nHz}$ (theory), $\sigma_2 \sim 14 \text{ nHz}$ (obs). Ruled out with a CL = $la_2 / \sigma_2 = 1.5$
- For Y_8^8 flow with $u_0 = 50 \text{ ms}^{-1}$, $|la_2| \sim 28 \text{ nHz}$ (theory), $\sigma_2 \sim 13 \text{ nHz}$ (obs). Ruled out with a CL = $la_2 / \sigma_2 = 2.0$

Summary

- Meridional flow (Y_2^0) : theoretical coefficients la_2 are 7 times smaller than corresponding errors in observations. Not sensitive to no. of cells in radial direction. Impossible to detect return flow by this method.
- Meridional flow (Y_8^0) and giant cells (Y_8^8, Y_8^4) : "Nearly degenerate" modes with $r_1 \sim 0.7$ have large values of la_2 . Can hope to detect in observations.
- However we do not find any clear signal around $r_t \sim 0.7$, so we put upper limits on strength of flows by comparing la_2 (theory) with corresponding errors (observations).