IRIS - Improved Reprocessing of the IRAS Survey

overview technical download gallery contact links

IRIS overview

The Infrared Astronomical Satellite (IRAS) had a tremendous impact on many areas of modern astrophysics. In particular it revealed the ubiquity of infrared cirrus that are a spectacular manifestation of the interstellar medium complexity but also an important foreground for observational cosmology. With the forthcoming Planck satellite there is a need for all-sky complementary data sets with arcminute resolution that can bring informations on specific foreground emissions that contaminate the Cosmic Microwave Background radiation. With its ~4' resolution matching perfectly the high-frequency bands of Planck, IRAS is a natural data set to study the variations of dust properties at all scales. But the latest version of the images delivered by the IRAS team (the ISSA plates) suffers from calibration, zero level and striping problems that can preclude its use, especially at 12 and 25 micron. In this paper we present how we proceeded to solve each of these problems and enhance significantly the general quality of the ISSA plates in the four bands (12, 25, 60 and 100 microns). This new generation of IRAS images, called IRIS, benefits from a better zodiacal light subtraction, from a calibration and zero level compatible with DIRBE, and from a better destriping. At 100 micron the IRIS product is also a significant improvement from the Schlegel et al. (1998) maps. IRIS keeps the full ISSA resolution, it includes well calibrated point sources and the diffuse emission calibration at scales smaller than 1 degree was corrected for the variation of the IRAS detector responsivity with scale and brightness. The uncertainty on the IRIS calibration and zero level are dominated by the uncertainty on the DIRBE calibration and on the accuracy of the zodiacal light model.

Comparison of a 250x250 pixels region at 100 micron of the ISSA, IRIS and Schlegel et al. data product. Units are MJy/sr.