Power Spectrum of the CIB

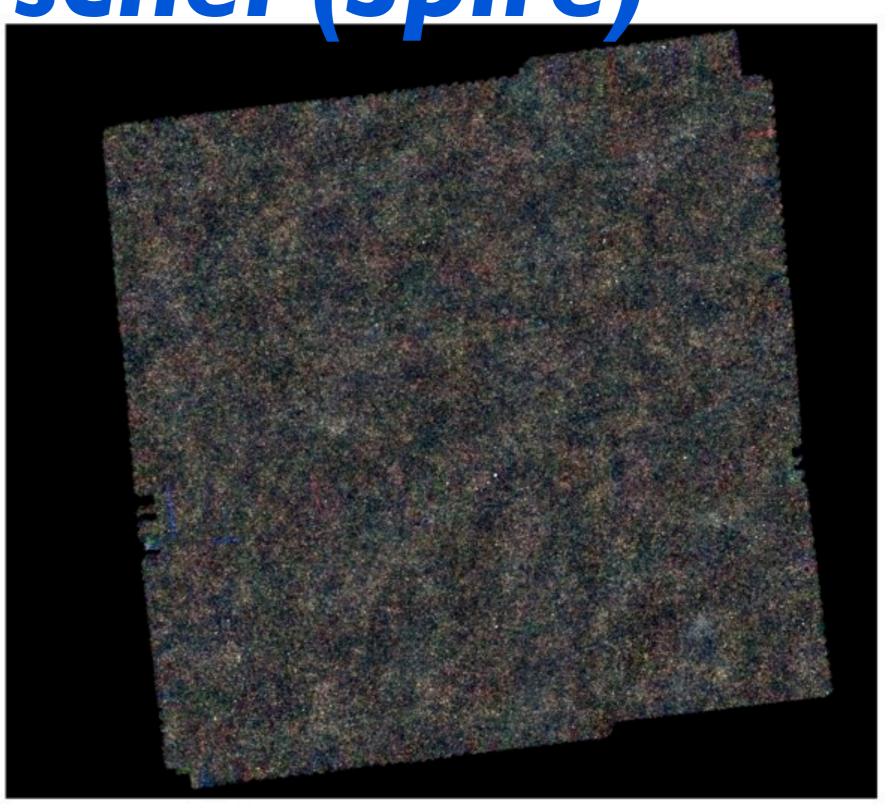
Gil Holder McGill University (Montreal, Canada)

Outline

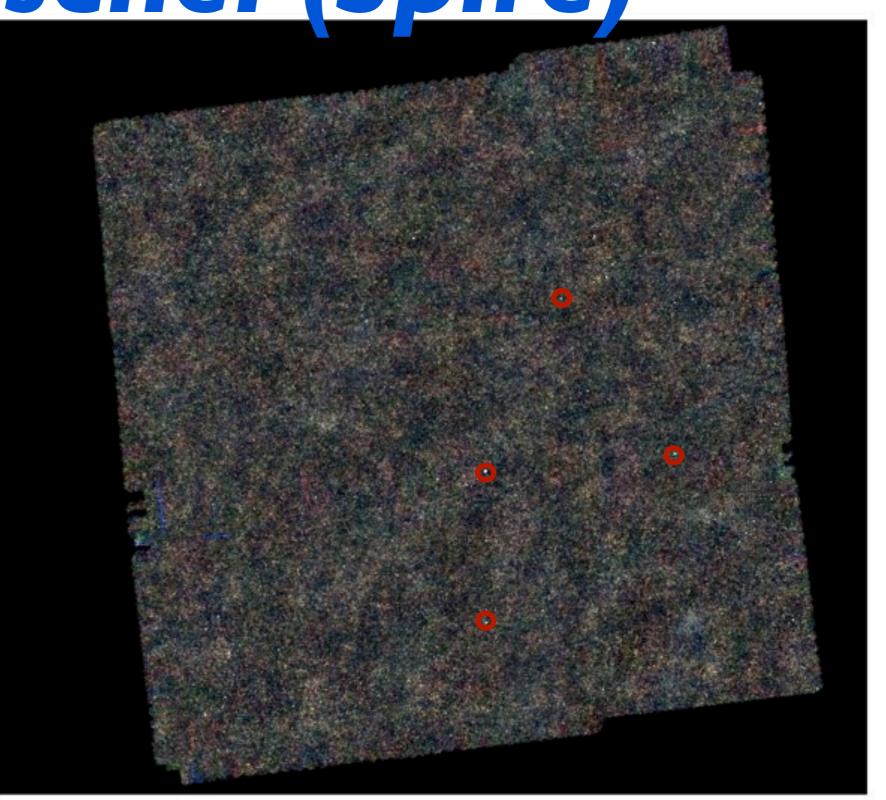
- power spectra principles
 - flat sky approximation
 - ★ cross-spectra
 - diversion on cross-linking
- incomplete overview of CIB detections

 100 sq deg with full overlap with SPT deep field (23h30,-55d)

• 250,350,500 um

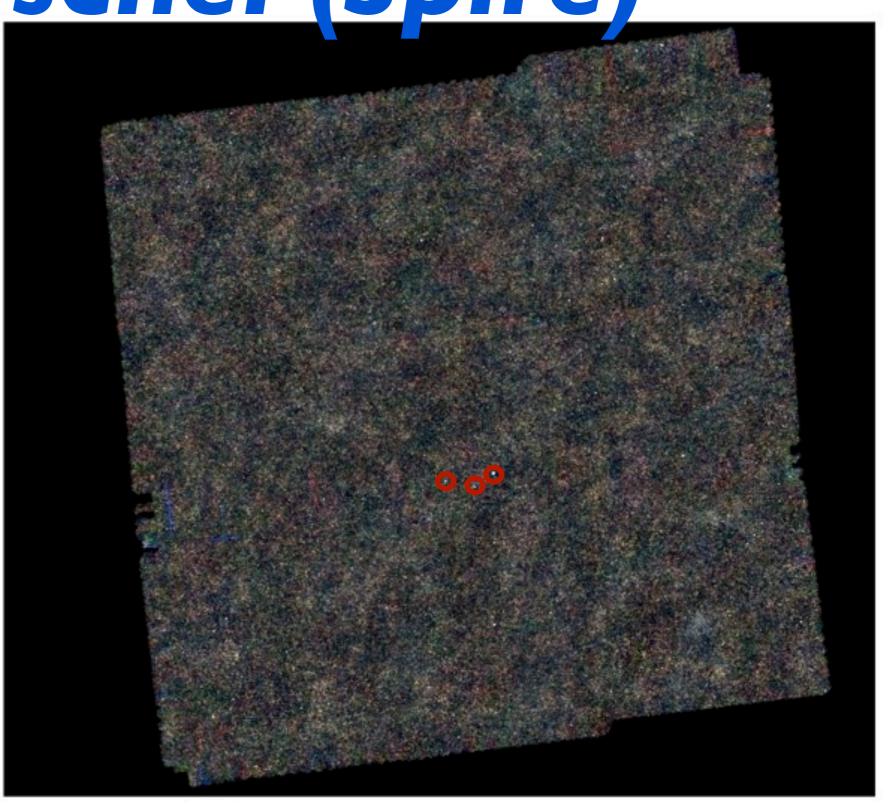


- can do source counts
- I pt probabilities



are sources too close to each other?

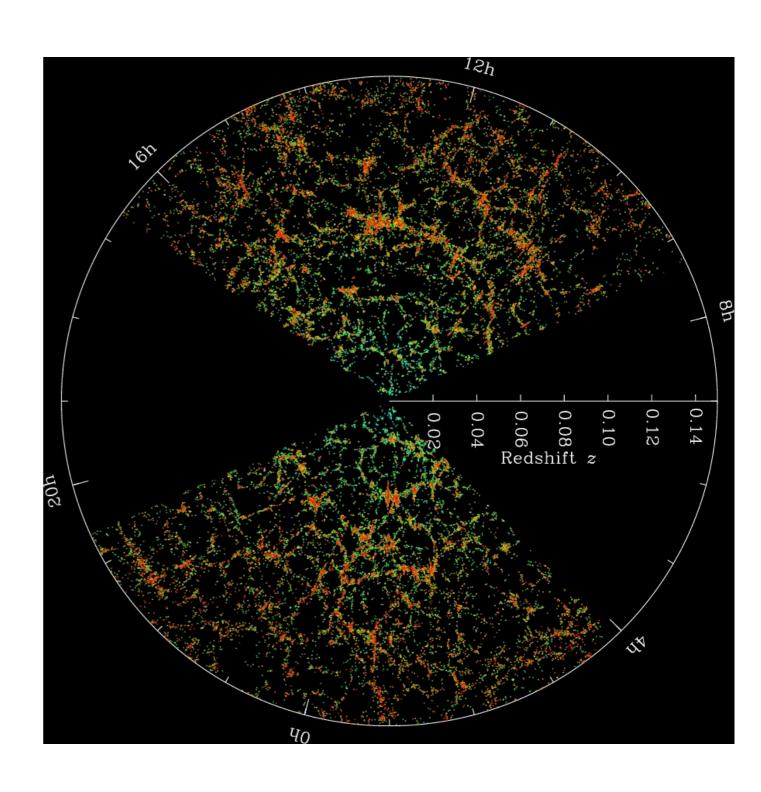
• 2 pt probabilities



- what about large scale structure in the map?
- general splotchiness in the map seems to not be fully captured by bright source counts

Clustering of Point Sources

- Radio and IR/submm sources presumably trace the large scale matter fluctuations
- Back of the envelope:
 - Power spectrum contribution: mean T² x projected clustering amplitude
 - Arcminute scales: few Mpc has clustering ~1 in 3D, divide by number of independent cells along line of sight => 1e-3
 - end result dT/T~10%



Poisson Power Spectrum

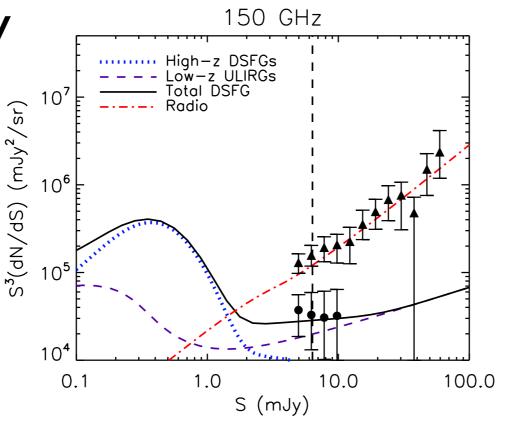
- single point source leads to a corrugation in Fourier space
- sum over N sources: $T^2 \sim N S^2$
- no preferred scales:
 white noise

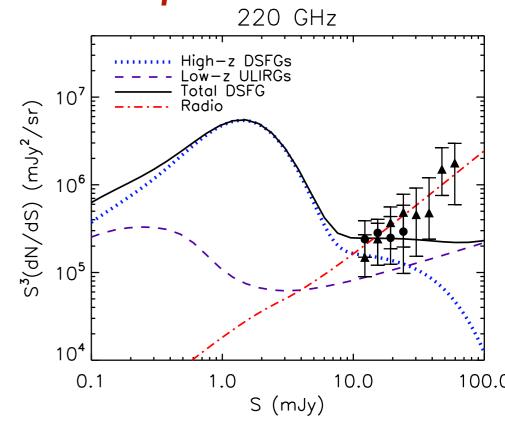
Real part of Fourier transform of I source

Which Sources?

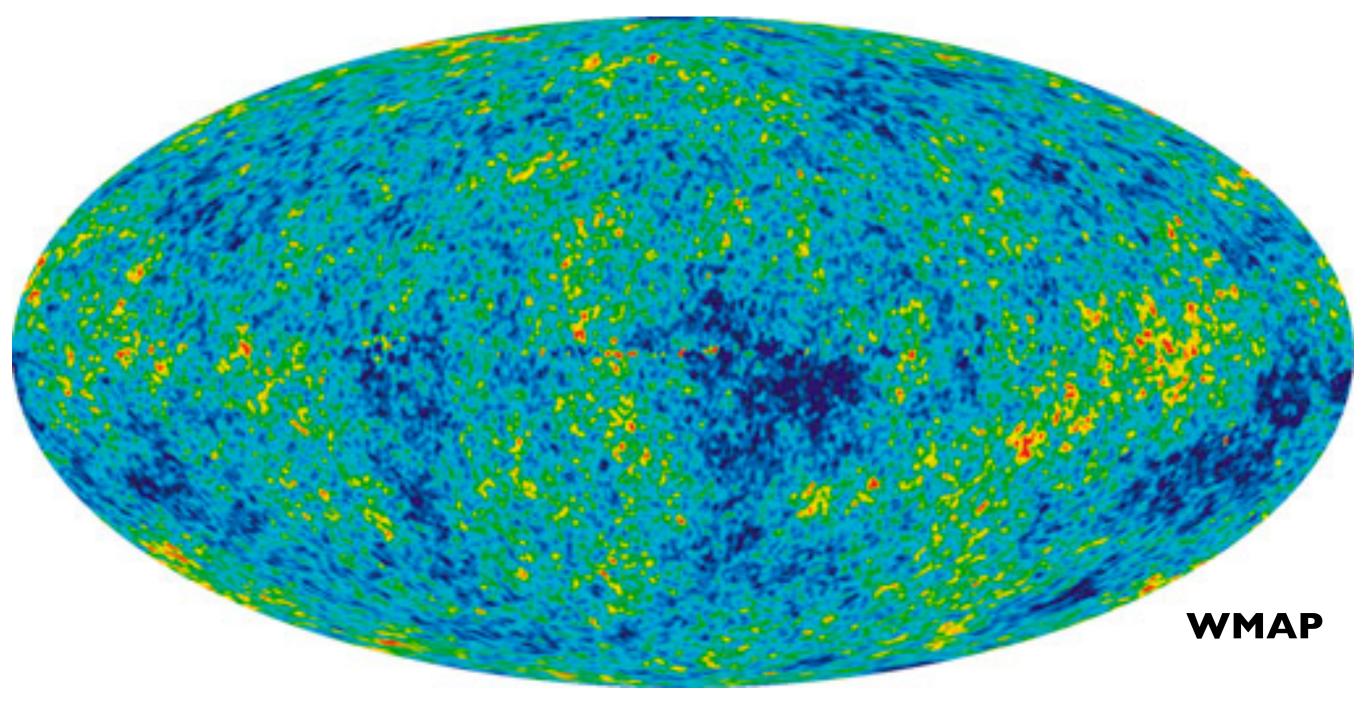
Contributions to Poisson power

CIB mainly comes from dim sources (faint end of classic SMGs?)





Hall et al 2010



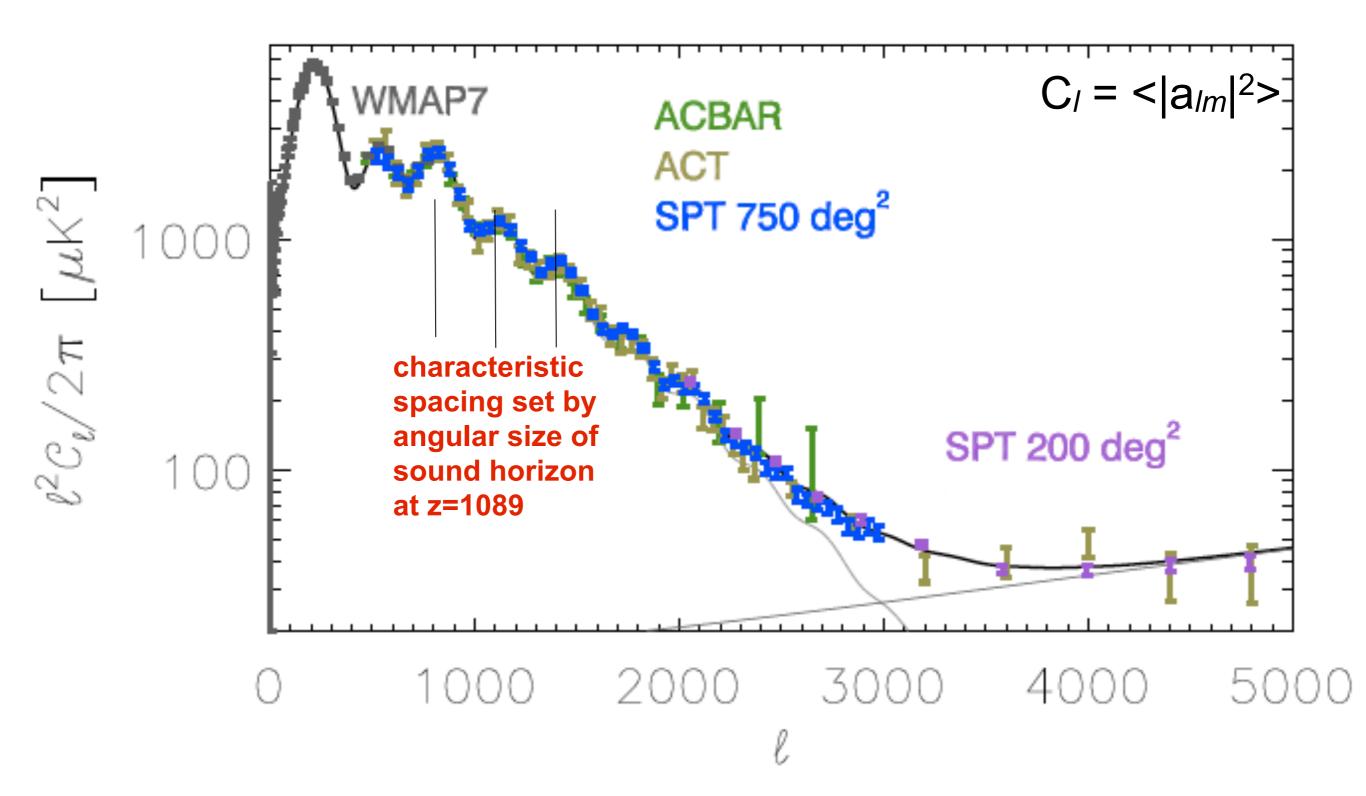
What do we do with CMB maps?

Spherical Harmonics

$$T(\theta,\phi) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\theta,\phi).$$

$$Y_\ell^m(\theta,\varphi) = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_\ell^m(\cos\theta) \, e^{im\varphi}$$
 Multipole moment I Mu

CMB Power Spectrum



Fourier Transforms

$$s(t) = \int_{-\infty}^{\infty} S(f) e^{i2\pi f t} df$$

Does one have to choose between Fourier coefficients and spherical harmonics?

(no)

From alm to akkky

Equation satisfied by Plm(x):

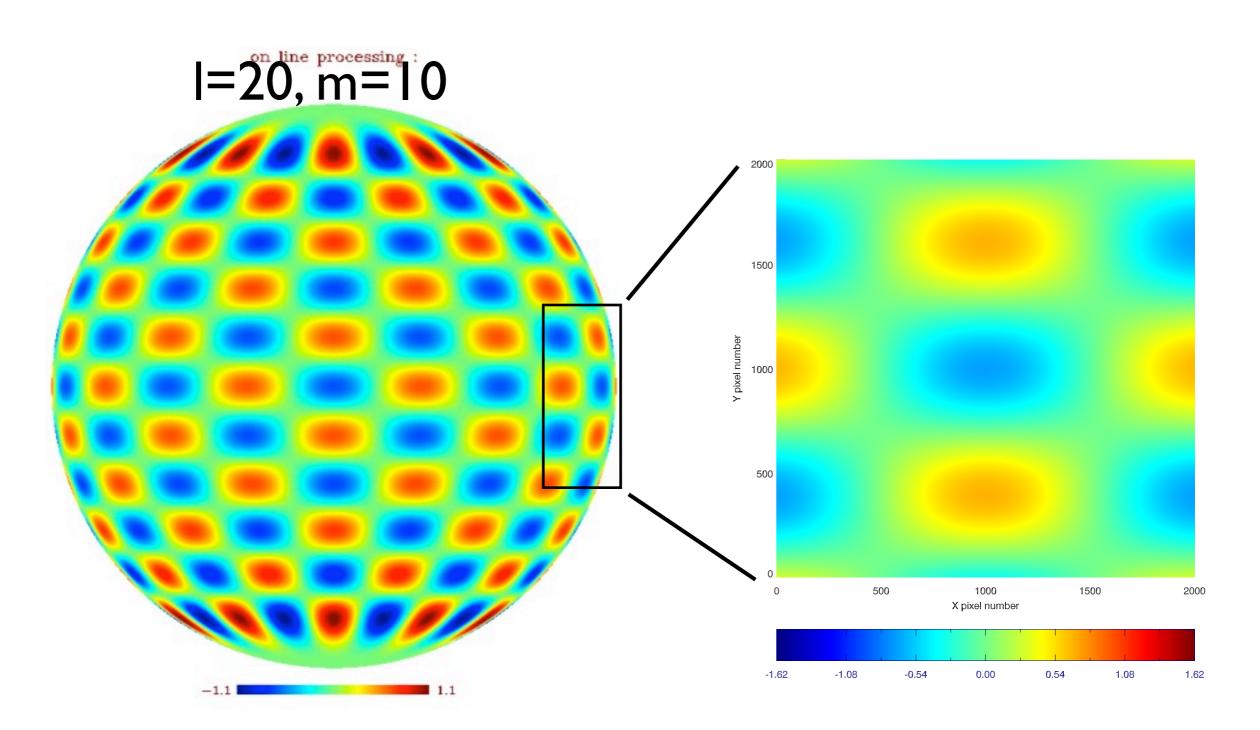
$$(1 - x^2)y'' - 2xy' + \left(\ell[\ell + 1] - \frac{m^2}{1 - x^2}\right)y = 0,$$

For $x\sim0$:

$$(1 - x^2) y'' - 2xy' + \left(\ell[\ell + 1] - \frac{m^2}{1 - x^2}\right) y = 0,$$

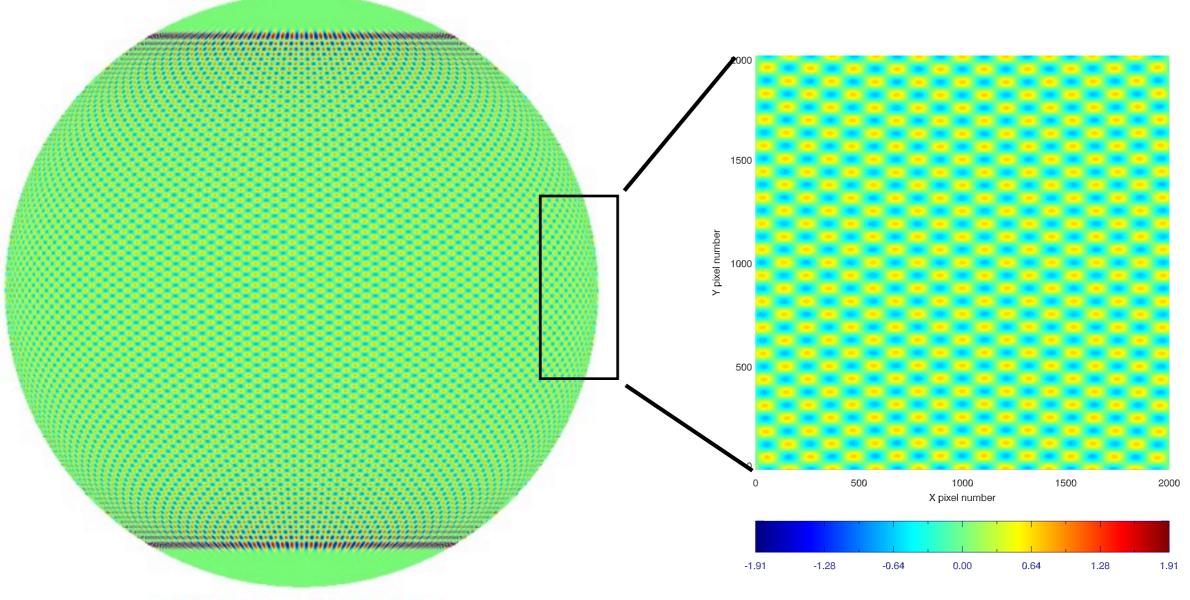
Harmonic Oscillator with $k=I(I+I)-m^2$ (Fourier modes!)

Projecting alm

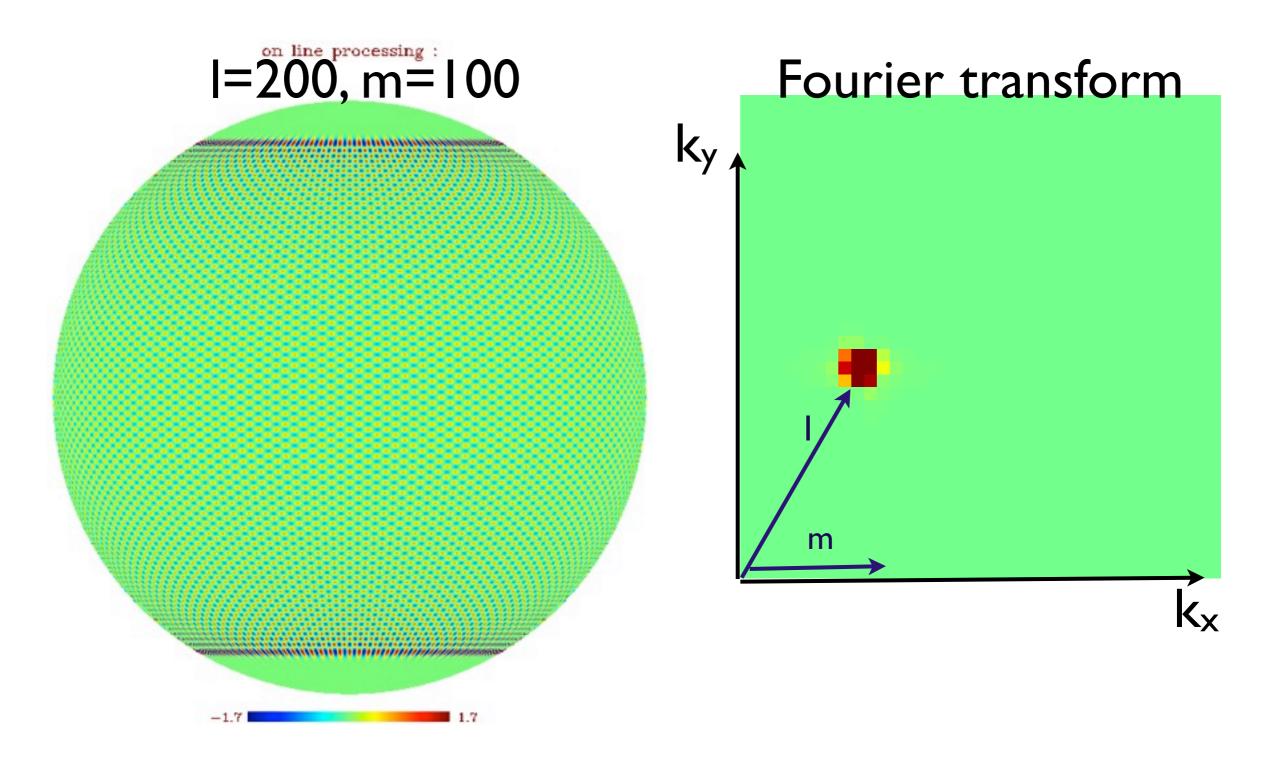


Projecting alm

l=200, m=100



Projecting alm



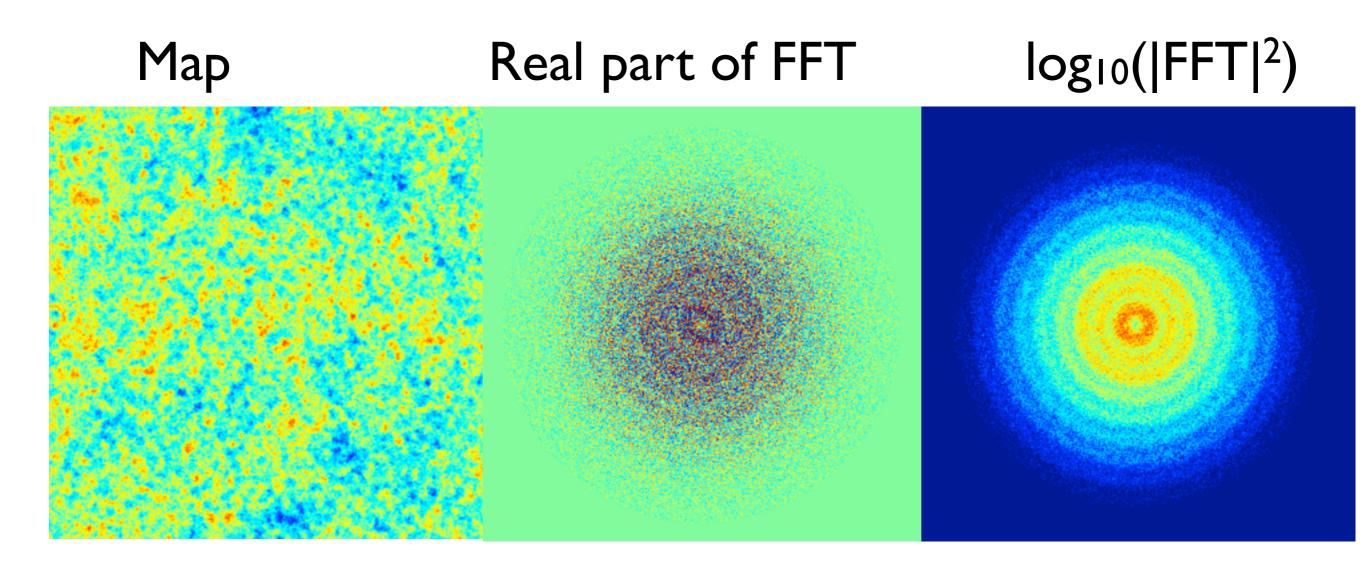
"Flat Sky" vs multipoles

- for chunk of map extracted at equator, the two are basically identical for all but the largest angles (I<30)
- choice of pole shouldn't matter (statistical isotropy), so Fourier or multipole, up to you
- $l\sim21600 k_{\varphi}(arcmin^{-1})$

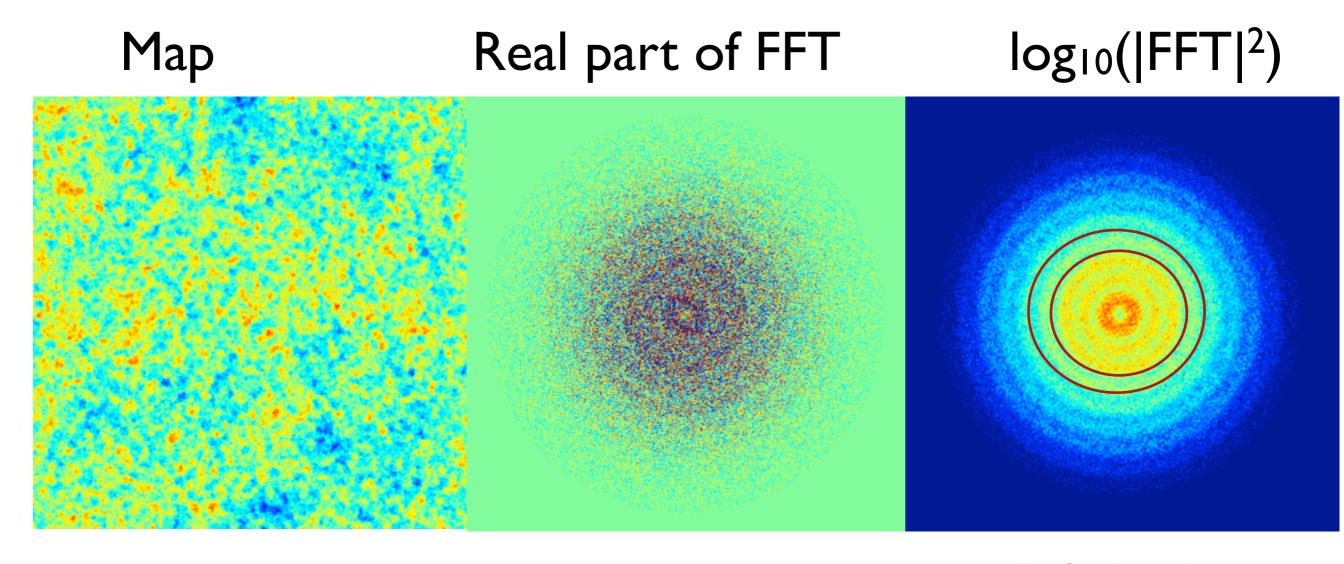
Power spectrum Uncertainties

- fundamentally limited by number of independent measurements, noise
- $C_{l;meas} = C_{l;true} + C_{l;noise}$ in any single map you can't tell the difference
- $Var(C_I)\sim 2/n_{meas}C_I^2$ "sample variance"
- more modes means better measurement of C_{l;true}+C_{l;noise}
- lower noise gives better measure of C_{I;true}

Simulated CMB

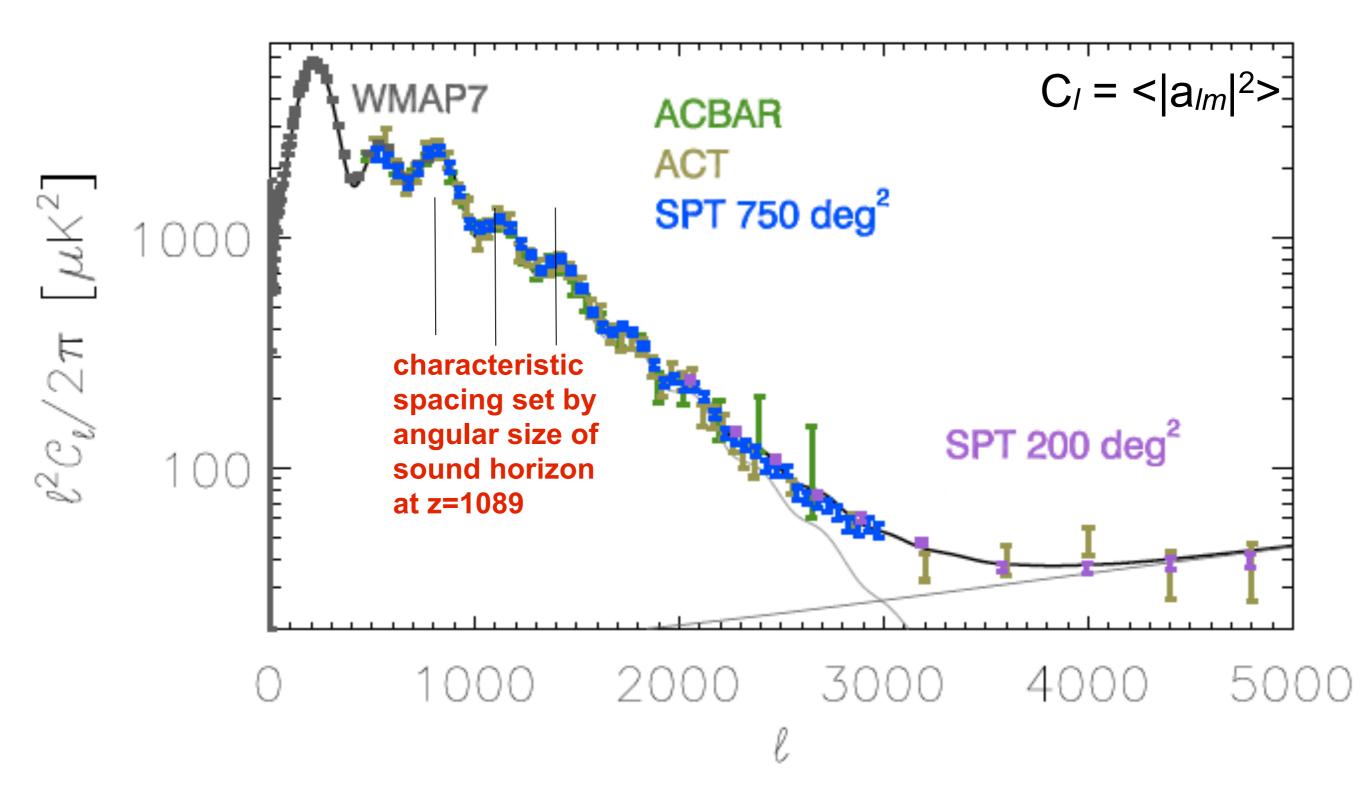


Simulated CMB



of independent samples set by map size

CMB Power Spectrum



Cross Spectra

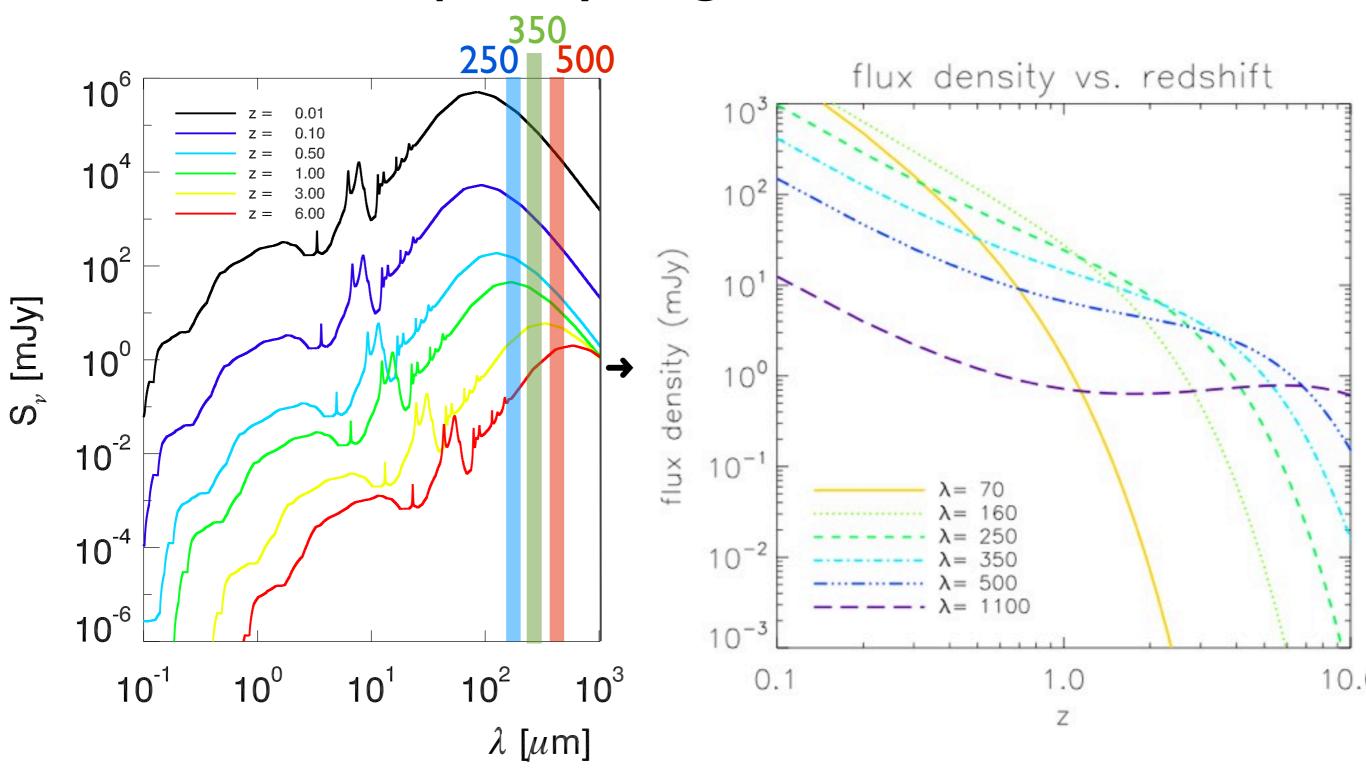
all quantities are Fourier space!

- \bullet T_m=T+n
- $\langle T_{1;m} T_{2;m} \rangle = \langle T_1 T_2 \rangle + \langle n_1 n_2 \rangle + \langle T_1 n_2 + T_2 n_1 \rangle$
- for 1=2 (map auto power spectrum), $\langle n_1 n_2 \rangle = \sigma^2$
- if $1 \neq 2$, $< n_1 n_2 > = 0$, so no bias
- quirks in your noise model don't affect cross spectrum!

Cross-Spectra in Action

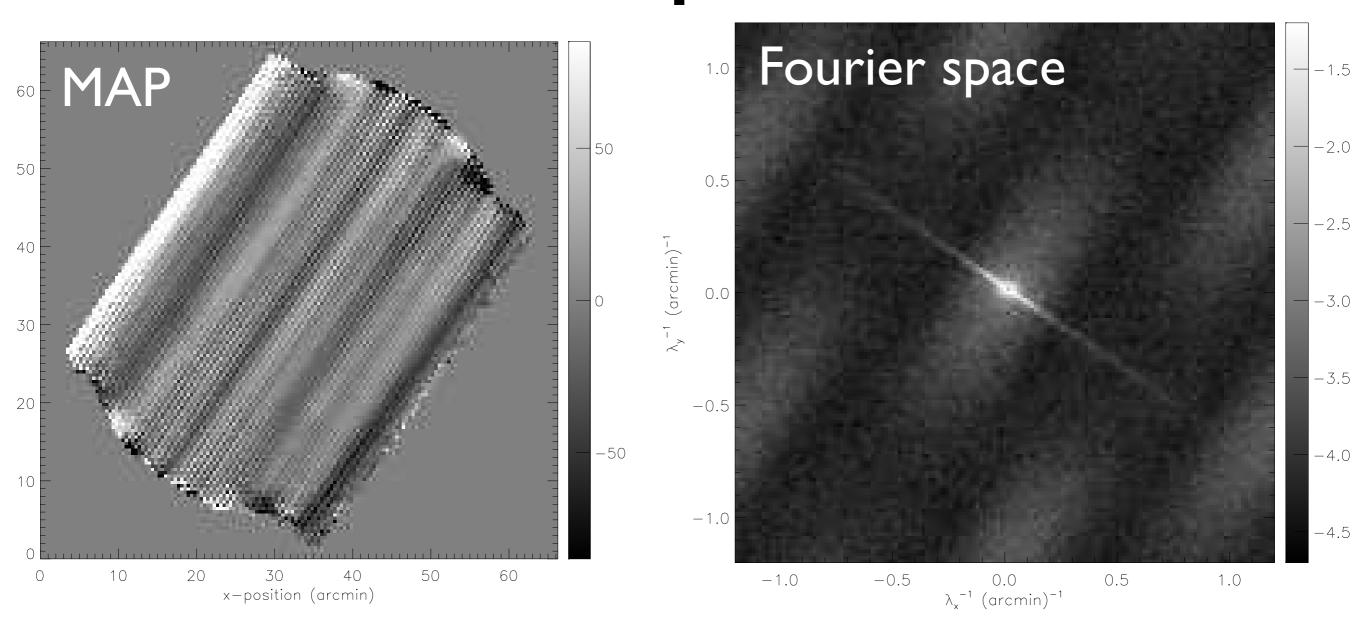
- if you have mapped a field 2 times, you can combine them: $T=(T_1+T_2)$
- the autospectrum of T is $\sim T_1T_1+T_2T_2+2T_1T_2$
- but T₁T₁+T₂T₂ have noise bias, so with a hit in sensitivity you can ignore these
- in the limit of large number of maps, hit in sensitivity goes to 0 while robust against problems of not knowing your detector noise

Multi-frequency is good!



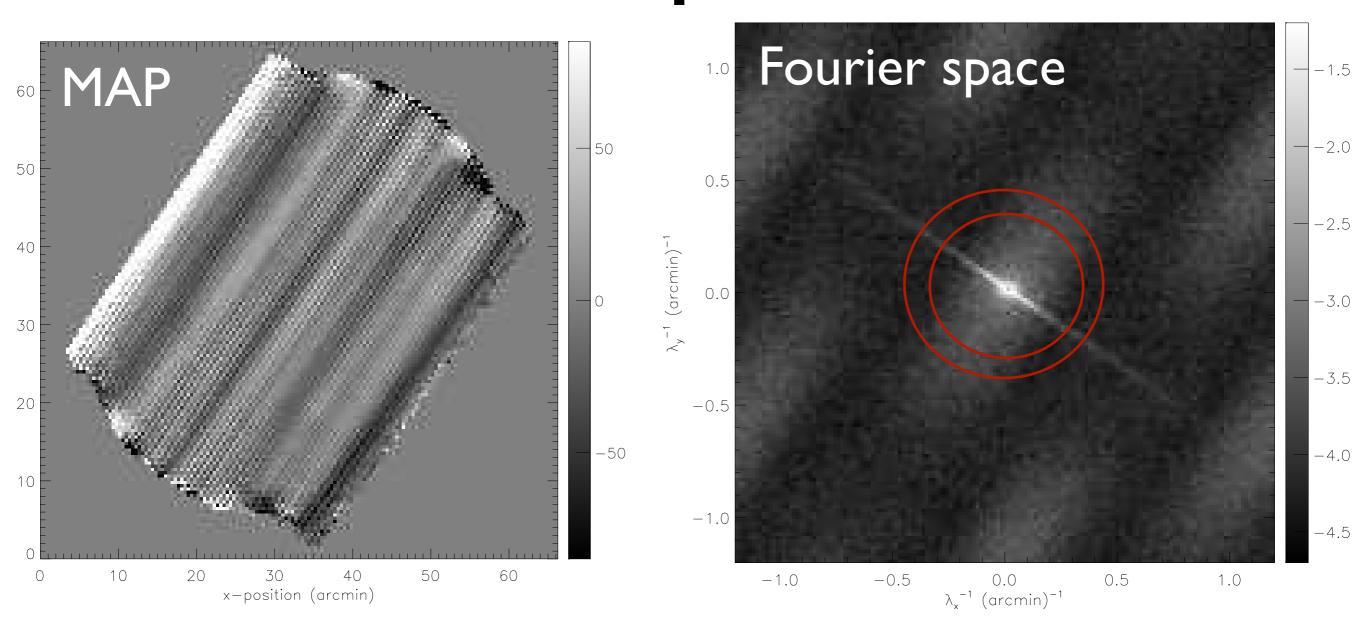
negative K-correction

Power Spectra: Anisotropic Noise

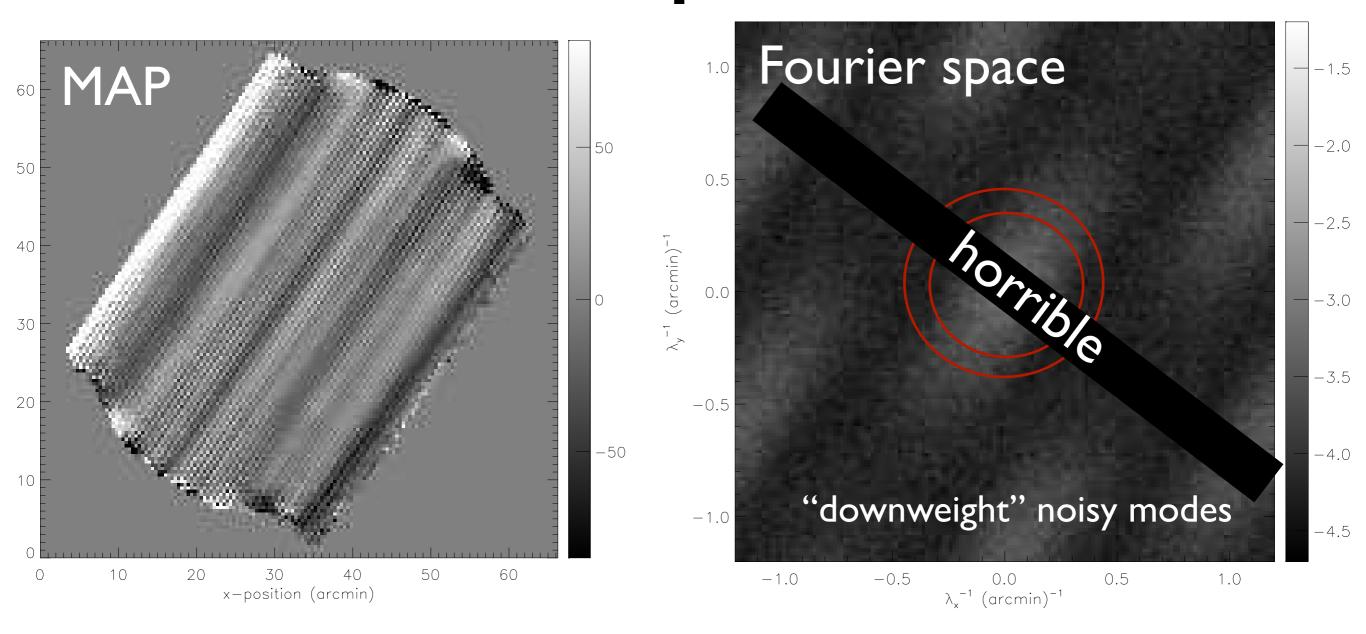


simulated BLAST noise map; Patanchon et al 0711.3463

Power Spectra: Anisotropic Noise

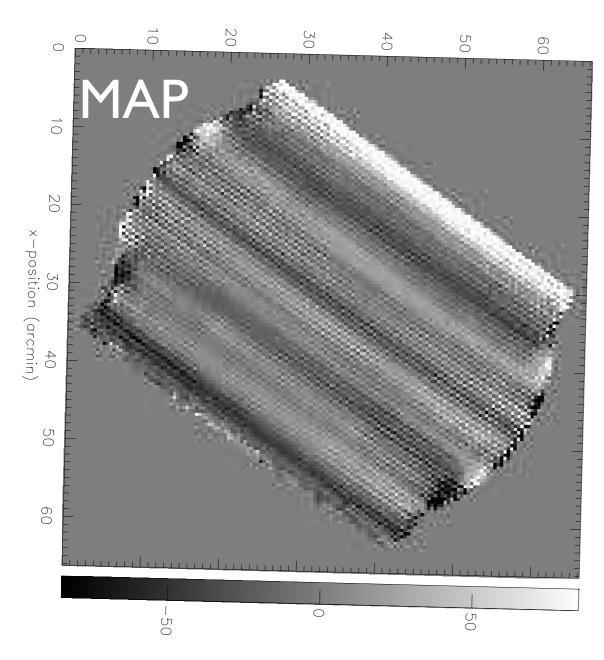


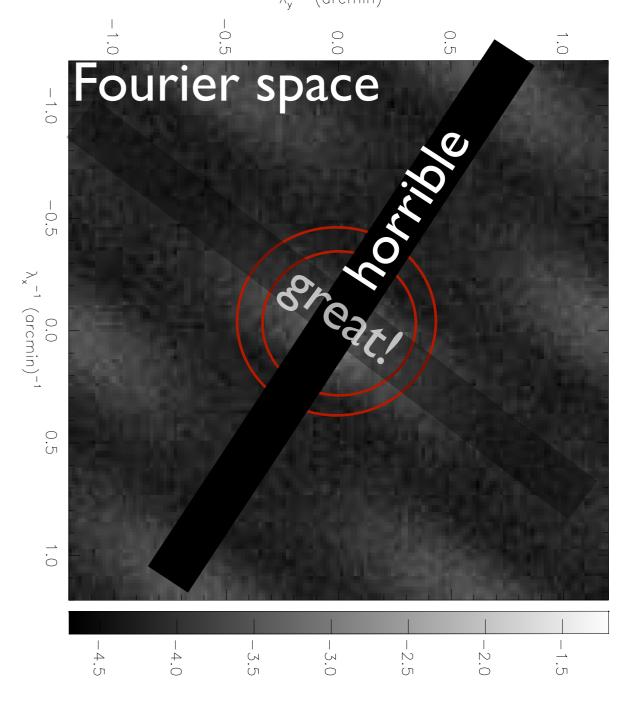
Power Spectra: Anisotropic Noise



Cross Linking

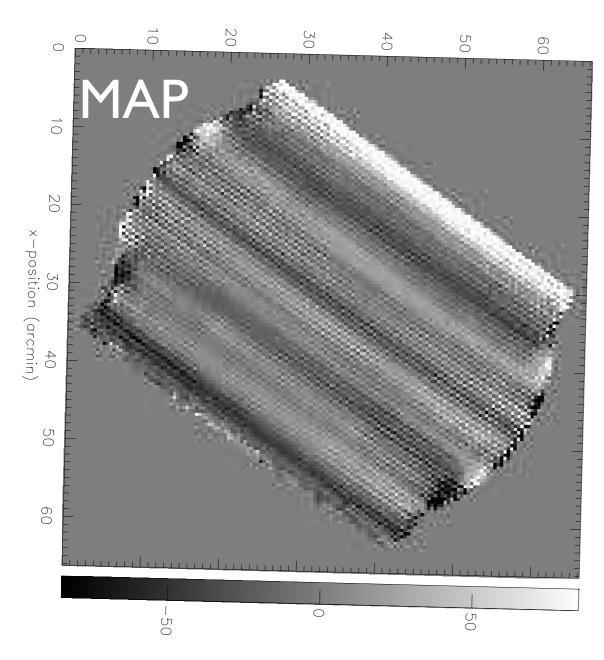
Make a map with artifact at different angle to be able to reconstruct lost modes

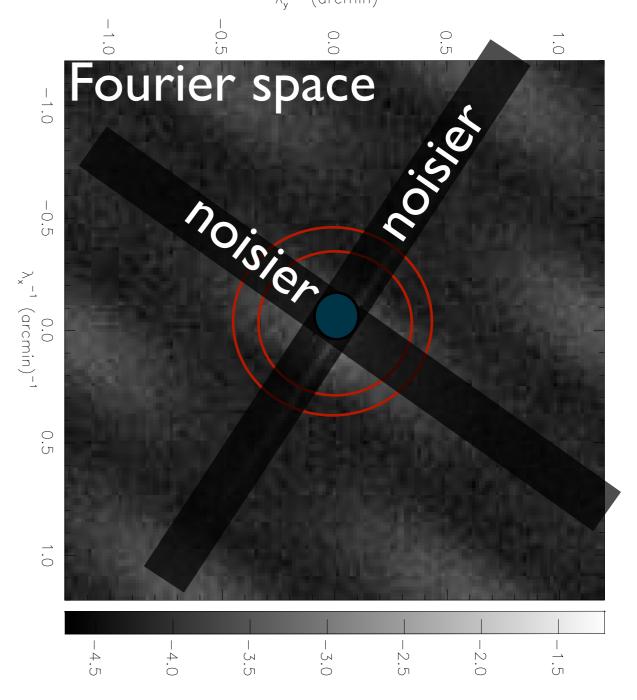




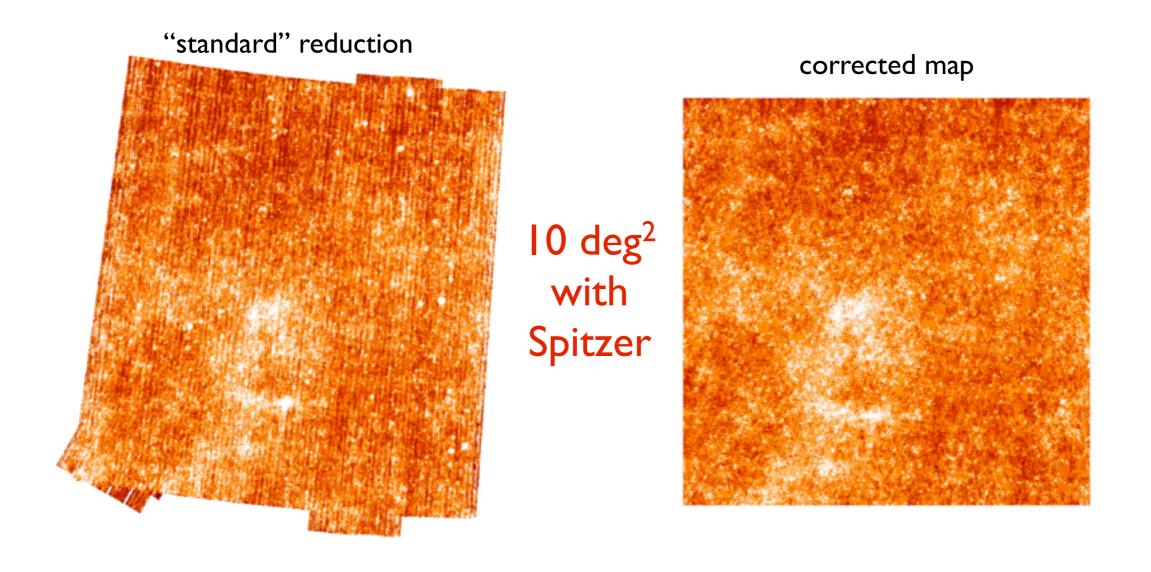
Cross Linking

Drawback: you now have 2N sort of noisy modes instead of N_{λ_v} horrible ones



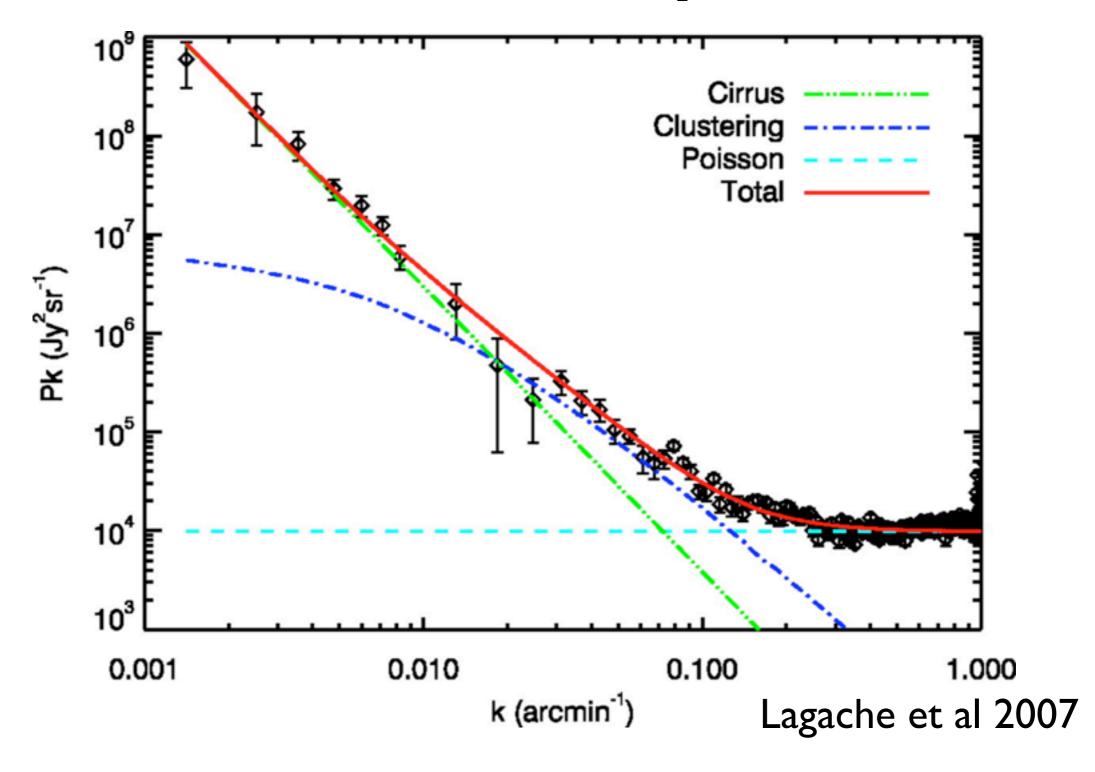


160 um Maps

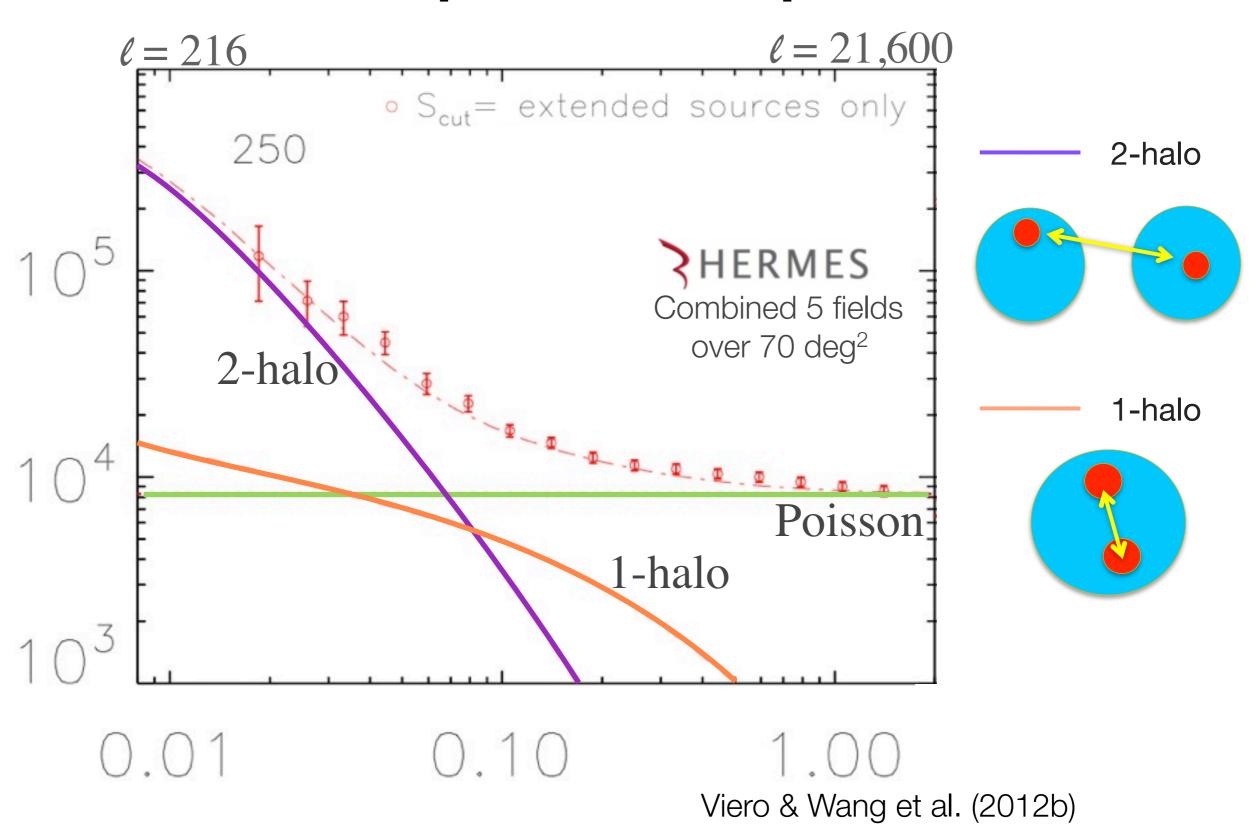


Lagache et al 2007

160 um Power Spectrum

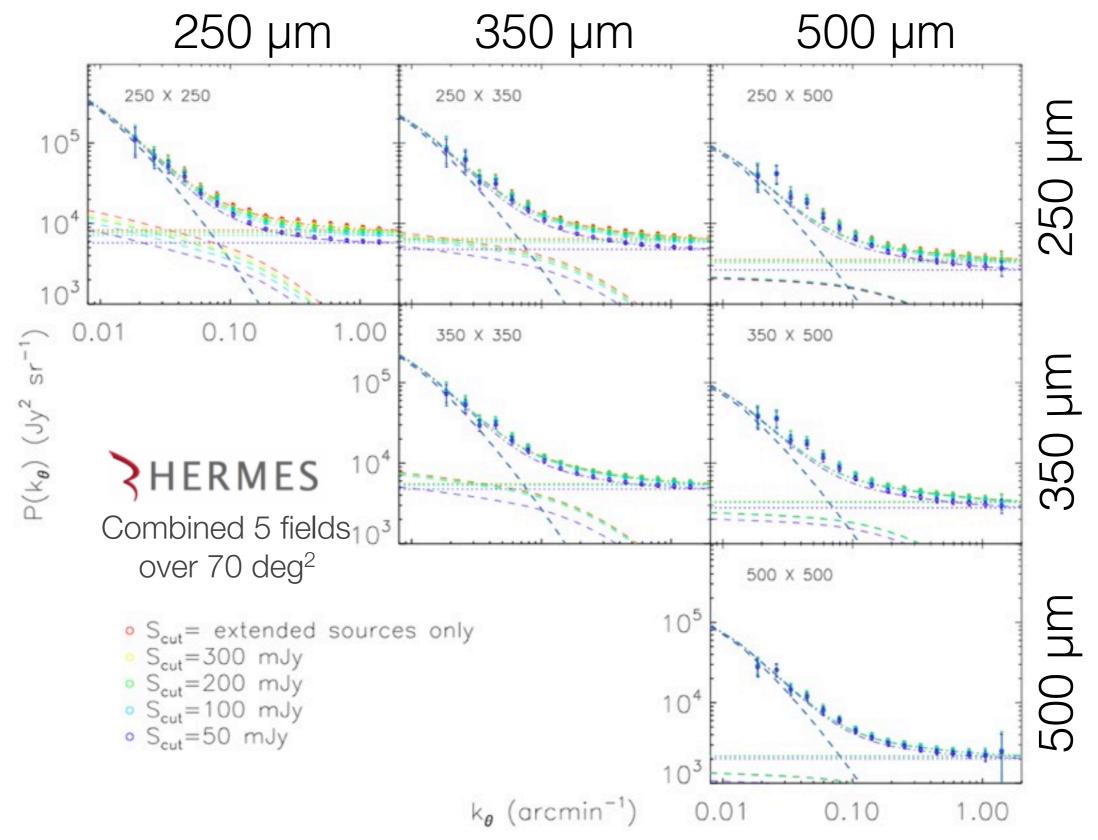


HerMES power spectra



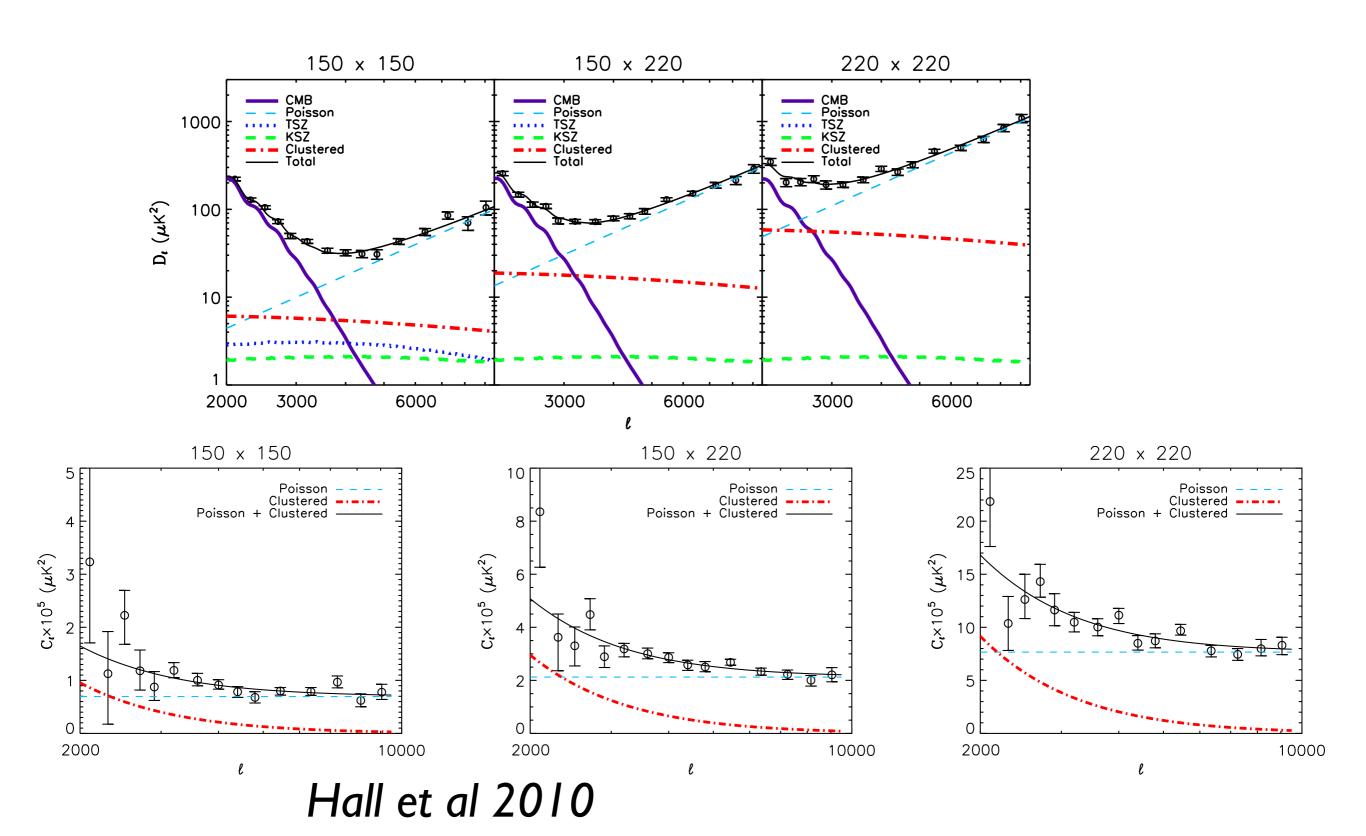
arXiv: 1208.5049

HerMES power spectra

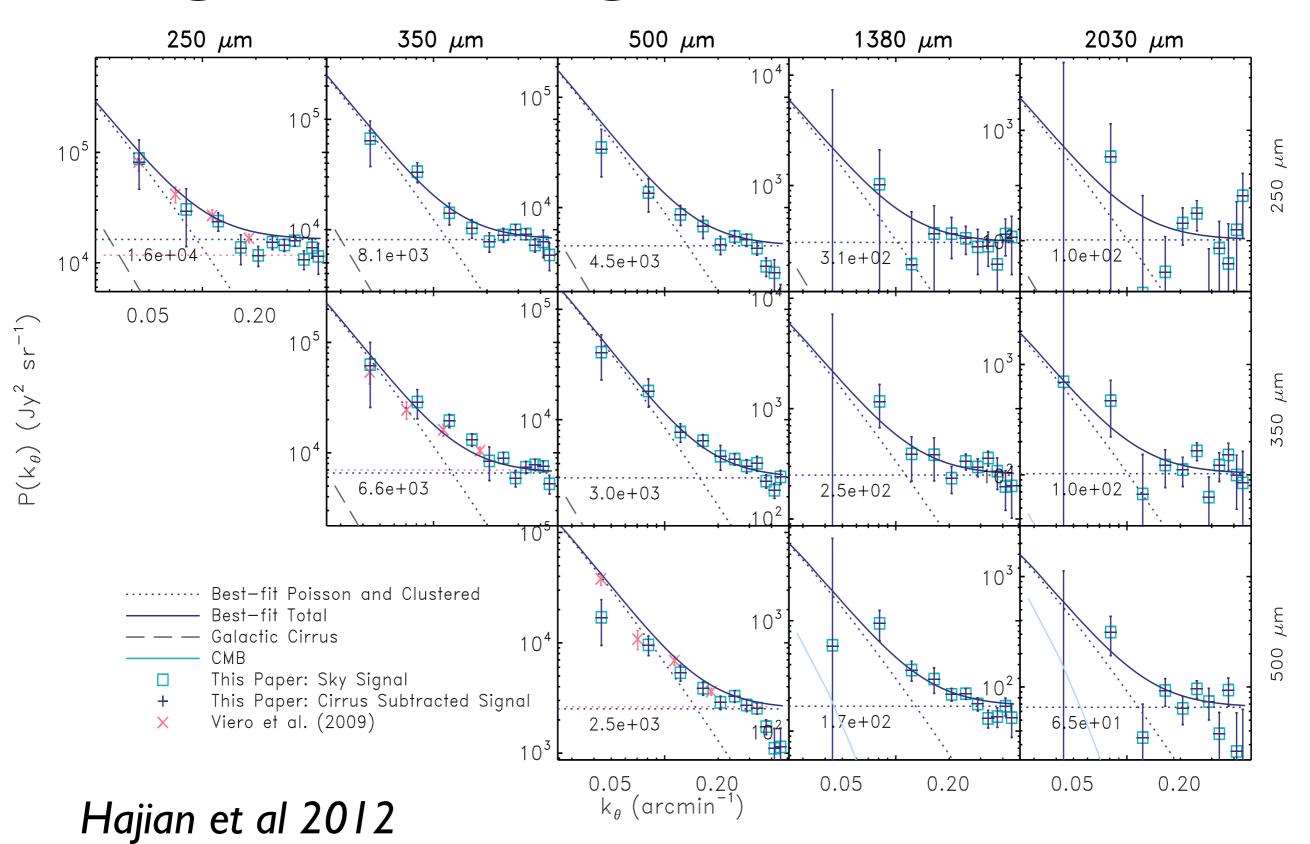


Viero & Wang et al. (2012b) arXiv: 1208.5049

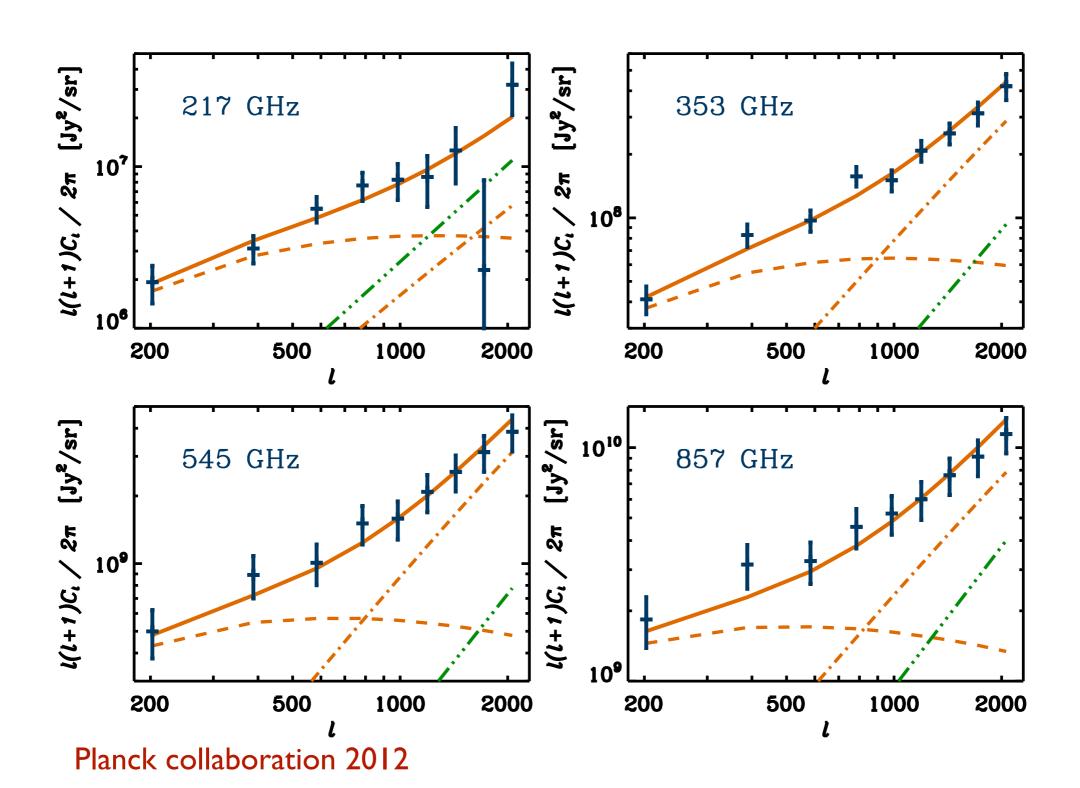
SPT CIB Detection



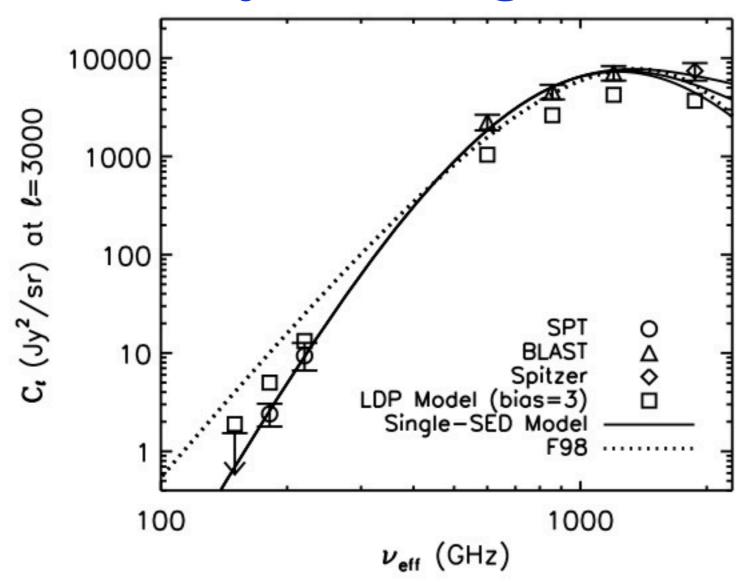
ACT X BLAST



Planck CIB Measurements



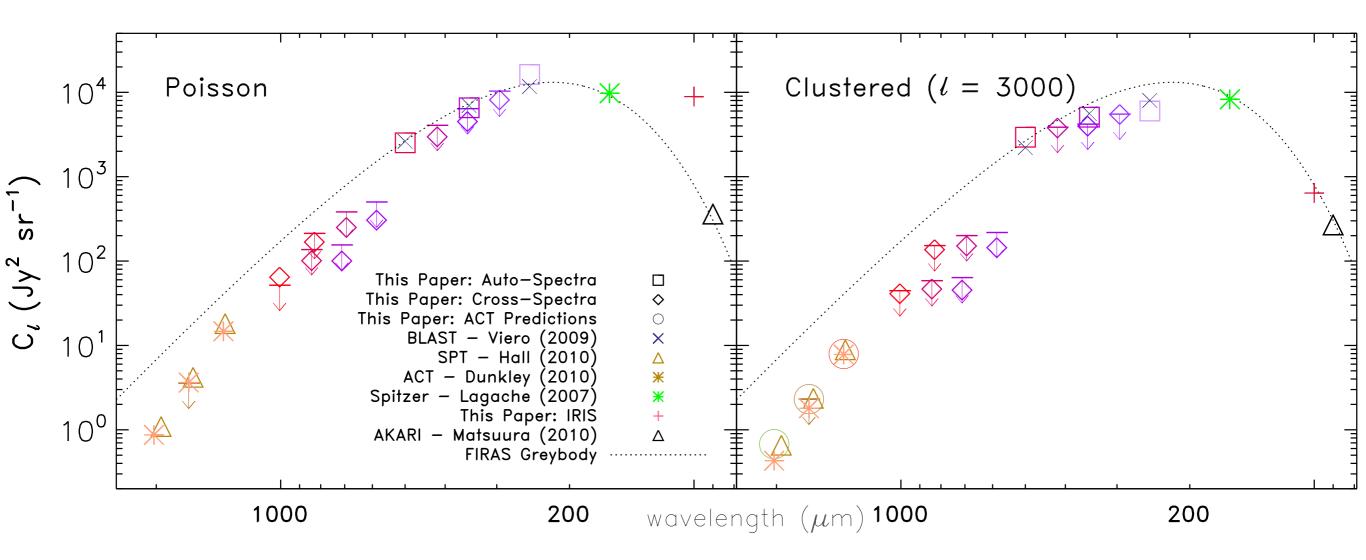
Frequency scaling of Dusty Galaxy Backgrounds



Single-SED model assumes all galaxies have same rest-frame properties (T=34 K, β=2) spread over a broad range in redshift (peaking at z=2)

First detection of clustered point source power from CIB sources in the mm bands

Frequency Scaling of the CIB



Summary

- lots more information in a map than just source counts (1 pt function)
- power spectrum of CIB map is providing measurements of clustering at many wavelengths (2 pt function)
 - –SPT, ACT, Planck turn out to be CIB experiments